Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
氧化石墨烯水悬浮液的非等温结晶过程
王晓1,姚晓莉1,候鉴峰1,范利武1,徐旭2,俞自涛1,胡亚才1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027;2. 中国计量学院 计量测试工程学院,浙江 杭州 310018
Non-isothermal crystallization of aqueous graphene oxide suspensions
WANG Xiao1,YAO Xiao-li1,HOU Jian-feng1,FAN Li-wu1,XU Xu2,YU Zi-tao1,HU Ya-cai1
1. Institute of Thermal Science and Power Systems,Zhejiang University,Hangzhou 310027,China;2. College of Metrological and Measurement Engineering,China Jiliang University,Hangzhou 310018,China
 全文: PDF(1666 KB)   HTML
摘要:

采用添加石墨烯纳米材料形成悬浮液的方法可以有效地提高相变储能材料的导热系数,石墨烯纳米材料的存在将对悬浮液的固液相变行为产生可观的影响. 利用差示扫描量热仪对低质量分数的氧化石墨烯水悬浮液进行非等温结晶实验观测,对比分析不同质量分数(最高为1%)的悬浮液在不同降温速率情况下过冷度的变化规律. 实验结果表明,由于氧化石墨烯的存在,悬浮液的过冷度较纯水有所降低. 随着质量分数的提高,悬浮液的过冷度呈逐步下降的趋势,当最高质量分数为1%时,悬浮液的过冷度较纯水下降了近5 ℃. 悬浮液的过冷度随着降温速率的增大会略微升高,但降温速率对过冷度随悬浮液质量分数的相对变化没有影响. 采用氧化石墨烯水悬浮液作为蓄冷工质能够有效地降低水的过冷度,但对整个非等温结晶过程未体现出加速的效果.

Abstract:

The thermal conductivity of phase change materials can be  efficiently increased by adding graphene nanoadditives to form suspensions. The presence of the graphene nanoadditives is expected to  have considerable influence on the solid-liquid phase change characteristics of the suspensions. The aqueous suspensions in the presence of graphene oxide nanosheets at dilute concentrations were characterized via the non-isothermal crystallization method on a differential scanning calorimeter. The dependence of the supercooling degree of the suspensions on the concentration (up to mass fraction of 1%) and the cooling rate was analyzed. Results show that the supercooling degree is lower than that of pure water due to the presence of the graphene oxide nanosheets and decreases gradually with increasing the mass fraction. The lowering of the supercooling degree was nearly 5 ℃ at the highest mass fraction of 1%. In addition, the supercooling degree was shown to rise slightly with increasing the cooling rate, whereas the relative variation of the supercooling degree with respect to mass fraction was unaffected. The utilization of aqueous graphene oxide suspensions as cold storage media can lower the supercooling degree,whereas the non-isothermal crystallization processes are unable to be shortened.

出版日期: 2014-08-04
:  TK 124  
通讯作者: 范利武,男,副教授     E-mail: liwufan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.019.

WANG Xiao,YAO Xiao-li,HOU Jian-feng,FAN Li-wu,XU Xu,YU Zi-tao,HU Ya-cai. Non-isothermal crystallization of aqueous graphene oxide suspensions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.019        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1272

1] 张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社,2009.
[2] 朱冬生,李新芳,汪南,等. 纳米流体相变蓄冷材料的基本特性与应用前景[J]. 材料导报,2007,21(4):87-91.
ZHU Dong-sheng,LI Xin-fang,WANG Nan,et al. Fundamental properties and application prospect of the phase change nanofluid as a cold storage material [J]. Materials Review,2007,21(4):87-91.
[3] 刘玉东,刘夔宁,何钦波,等. 低温纳米复合相变蓄冷材料热物性研究[J]. 工程热物理学报,2008,29(1):105107.
LIU Yu-dong,LI Kui-ning,HE Qin-bo,et al. Study on thermal properties of low temperature nanocomposites for phase change cool storage [J]. Journal of Engineering Thermophysics,2008,29(1):105-107.
[4] WU Shu-ying,ZHU Dong-sheng,LI Xin-fang,et al. Thermal energy storage behavior of Al2O3-H2O nanofluids [J]. Thermochimica Acta,2009,483(1/2):73-77.
[5] 杨硕,朱冬生,吴淑英,等. Al2O3-H2O纳米流体相变蓄冷特性研究[J]. 制冷学报,2010,31(1):23-26.
YANG Shuo,ZHU Dong-sheng,WU Shu-ying,et al. Study on phase-change cold storage characteristics of Al2O3-H2O nanofluids [J]. Journal of Refrigeration,2010,31(1):23-26.
[6] BIGG E K. The supercooling of water [J]. Proceedings of the Physical Society, Section B,1953,66(8):688-694.
[7] ANGEL C Z. Supercooled water [J]. Annual review of Physical Chemistry,1983,34: 593-630.
[8] 洪荣华,孙志坚,吴杰,等. 成核添加剂减小冰蓄冷溶液过冷度的实验研究[J]. 浙江大学学报:工学版,2004,39(11):1797-1800.
HONG Rong-hua,SUN Zhi-jian,WU Jie, et al. Experimental study on reduce supercooling degree of ice storage solution using nucleation additive [J]. Journal of Zhejiang University:Engineering Science,2004,39(11):1797-1800.
[9] CHEN Ying,JIA Li-si,MO Song-ping. Experimental investigation of crystallization process of nanofluid by DSC [J]. Journal of South University:English Edition,2010,26(2):359-363.
[10] 贾莉斯,陈颖,莫松平. 二氧化钦纳米流体的固液相变特性[J]. 工程热物理学报,2011,32(11):1913-1916.
JIA Li-si,CHEN Ying,MO Song-ping. Solid-liquid phase change property of titanium dioxide nanofluid [J]. Journal of Engineering Thermophysics,2011,32(11):1913-1916.
[11] HE Qin-bo,WANG Shuang-feng,TONG Ming-wei,et al. Experimental investigation on nucleation supercooling degree of TiO2-H2O nanofluids for cool storage [J]. Energy Conversion and Management,2012,64:199-205.
[12] GONG Wei,XIAO Hong-yi,YANG Zhen,et al. Study of the subcooling phenomenon of phase change material with different nanoparticlcle additives for energys storage [C]//Proceedings of the 8th International Symposium on Heat Transfer. Beijing: [s.n.], 2012:16.
[13] KOUSKSOU T,RHAFIKI T,MAHDAOUI M,et al.Crystallization of supercooled PCMs inside emulsions: DSC applications [J]. Solar Energy Materials and Solar Cells,2012,107:28-36.
[14] WANG Ji-feng,XIE Hua-qing,XIN Zhong. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes [J]. Thermochimica Acta,2009,488(1/2):39-42.
[15] YU Zi-tao,FANG Xin,FAN Li-wu,et al. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes [J]. Carbon,2013,53:277-285.
[16] JIA Li-si,CHEN Ying,MO Song-ping. Solid liquid phase transition of nanofluids [J]. International Journal of Heat and Mass Transfer,2013,59:29-34.
[17] YU Wei, XIE Hua-qing, CHEN Wei. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets [J]. Journal of Applied Physics,2010,107(9):094317.
[18] TESSY THERES B, SUNDARA S R. Investigation of thermal and electrical conductivity of graphene based nanofluids [J]. Journal of Applied Physics,2010,108(12):124308.
[19] SOUJIT S G,SIVA V M,SREEPRASAD T S,et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets [J]. Journal of Applied Physics,2011,110(8):084302.
[20] 刘东方. 潜热型水基氧化石墨烯纳米流体的制备及其过冷特性研究[D]. 重庆:重庆大学,2012:18-67.
LIU Dong-fang. Study of preparation and supercooling characteristics of graphene oxide nanofluids as phrase change material [D]. Chongqing:Chongqing University,2012:1867.
[21] 杨梅,赵长颖. 添加纳米颗粒的石蜡非等温凝固过程研究[J]. 热科学与技术,2013,12(1):47-51.
YANG Mei,ZHAO Chang-ying. Investigation on non-isothermal solidification of paraffin with nano-particle additives [J]. Journal of Thermal Science and Technology,2013,12(1):47-51.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[13] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[14] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[15] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.