Please wait a minute...
浙江大学学报(工学版)
能源与环境工程     
毛细管内气-液Taylor流动换热特性数值模拟
周乃香, 张井志, 林金品, 李蔚
1.  山东省城乡规划设计研究院,山东 济南 250013;
2.  浙江大学 能源工程学院,浙江 杭州 310027
Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries
ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei
1. Shandong Urban and Rural Planning and Design Institute, Jinan 250013, China;
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1318 KB)   HTML
摘要:

采用动网格技术,对恒壁温边界下,竖直上升毛细管(管径为1 mm)内充分发展状态的气-液Taylor流动进行数值研究,分析入口雷诺数、气泡体积分数对Taylor流动的换热阻力特性的影响.模拟结果表明,由于Taylor气泡的存在,液柱区域的摩擦阻力因子高于单相流动,模拟结果与经验公式吻合较好.液柱表观努赛尔特数随气泡体积分数的增大而增大,基本不随入口雷诺数的变化而改变.在恒壁温边界下,Taylor气泡及液膜区域对整体传热的贡献较小.液柱区域内循环可以提高加强核心区域与近壁面区域的热量交换,加快换热过程,提高Taylor流动的传热效果.内循环对换热的强化作用随着液柱长度的增大而降低.

Abstract:

Numerical work of fully developed gas-liquid Taylor flow in vertical upward capillaries with inner diameter of 1 mm under isothermal wall boundary condition was performed with the dynamic mesh model. The effects of inlet Reynolds number and gas void fraction on thermal and flow characteristics of Taylor flow were discussed. Results indicate that the friction factor in the liquid slug is higher than that of single-phase flow, and the empirical correlation can predict the numerical data well. The apparent liquid slug Nusselt number increasing with increasing gas void fraction and remains nearly constant with increasing inlet Reynolds number. The Taylor bubble and the thin liquid film region have insignificant contribution to the overall heat transfer coefficients in Taylor flow under isothermal wall boundary condition. The inner recirculation in the liquid slug region can improve the heat transfer between the tube wall and the core region, accelerate the heat transfer process, and enhance the heat transfer performance in Taylor flow. The effect of inner recirculation on heat transfer enhancement decreases with increasing liquid slug length.

出版日期: 2016-10-28
:  TK 124  
基金资助:

国家自然科学基金重大国际合作项目(51210011);浙江省自然科学基金资助项目(LZ13E060001).

通讯作者: 李蔚,男,教授. ORCID: 0000-0002-2295-2542.     E-mail: weili96@zju.edu.cn
作者简介: 周乃香(1987— ),女,硕士,工程师,从事强化传热与节能技术研究. ORCID: 0000-0003-3061-230X. E-mail: queenznx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.004.

ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.004        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/1859

[1] ZHAO T S, BI Q C. Cocurrent airwater twophase flow patterns in vertical triangular microchannels [J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782.[2] LIU H, VANDU C O, KRISHNA R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. Industrial and Engineering Chemistry Research, 2005, 44(14): 4884-4897.
[3] HAN Y, SHIKAZONO N. Measurement of the liquid film thickness in micro tube slug flow [J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 842-853.
[4] KREUTZER M T, KAPTEIJN F, MOULIJN J A, et al.Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005,51(9): 2428-2440.[5] LEUNG S Y, LIU Y, FLETCHER D F, et al. Heat transfer in well-characterised Taylor flow [J]. Chemical Engineering Science, 2010, 65(24): 6379-6388.
[6] WALSH P A, WALSH E J, MUZYCHKA Y S. Heat transfer model for gasliquid slug flows under constant flux [J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3193-3201.
[7] LIM Y S, YU S M, NGUYEN N T. Flow visualization and heat transfer characteristics of gasliquid twophase flow in microtube under constant heat flux at wall [J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 350-359.
[8] GUPTA R, FLETCHER D F, HAYNES B S. CFD modelling of flow and heat transfer in the Taylor flow regime [J]. Chemical Engineering Science, 2010,65(6): 2094-2107.[9] ZHANG J, LI W. Investigation of hydrodynamic and heat transfer characteristics of gasliquid Taylor flow in vertical capillaries [J]. International Communications in Heat and Mass Transfer, 2016, 74: 110.
[10] MEHDIZADEH A, SHERIF S A, LEAR W E.Numerical simulation of thermofluid characteristics of twophase slug flow in microchannels [J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3457-3465.
[11] ASADOLAHI A N, GUPTA R, LEUNG S Y, et al. Validation of a CFD model of Taylor flow hydrodynamics and heat transfer [J]. Chemical Engineering Science, 2012, 69(1): 541-552.
[12] TALIMI V, MUZYCHKA Y S, KOCABIYIK S. Slug flow heat transfer in square microchannels [J]. International Journal of Heat and Mass Transfer, 2013, 62: 752-760.
[13] CHE Z, WONG T N, NGUYEN N T. Heat transfer in plug flow in cylindrical microcapillaries with constant surface heat flux [J]. International Journal of Thermal Sciences, 2013, 64: 204-212.
[14] 张井志,李蔚.微小管径圆管气液Taylor流动数值模拟[J].浙江大学学报:工学版, 2015, 49(8): 1572-1577.
ZHANG Jingzhi, LI Wei. Numerical simulation of gasliquid Taylor flow in mini/micro tubes [J], Journal of Zhejiang University: Engineering Science, 2015,49(8): 15721577.
[15] 张井志,李蔚.毛细管内气液Taylor流动的气泡及阻力特性[J].化工学报, 2015, 66(3): 942-948.
ZHANG Jingzhi, LI Wei. Bubble and frictional characteristics of gasliquid Taylor flow in capillary tube [J]. CIESC Journal, 2015, 66(3): 942-948.
[16] 过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003, 39(12): 19.
GUO Zengyuan. Principle of field coordination in heat exchangers and its applications [J]. Chinese Journal of Mechanical Engineering, 2003, 39(12): 19.

[1] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[2] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[3] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[4] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[8] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.