Please wait a minute...
浙江大学学报(工学版)
能源与环境工程     
TiO2纳米流体在液冷服上的应用实验研究
王涛1,2, 王亮3, 林贵平1, 柏立战1,4, 刘向阳2, 卜雪琴1, 谢广辉2
1. 北京航空航天大学 人机工效与环境控制重点学科实验室,北京 100191; 2. 中国航天员科研训练中心,北京 100094;3. 中国科学院 工程热物理研究所,北京100190;4. 英国利兹大学 化学与处理工程学院,利兹 LS2 9JT
Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids
WANG Tao1,2, WANG Liang3, LIN Gui ping1, BAI Li zhan1,4, LIU Xiang yang2, BU Xue qin1, XIE Guang hui2
1. Laboratory of Fundamental Science on Ergonomics and Environment Control, Beihang University, Beijing 100191, China; 2. China Astronaut Research and Training Center, Beijing 100094, China; 3. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; 4. School of Chemical and Process Engineering, University of Leeds,Leeds LS2 9JT, UK
 全文: PDF(2177 KB)   HTML
摘要:

为了更好地理解与运用纳米流体在液冷服上的强化传热能力,开展TiO2纳米流体在液冷服上的试验研究.利用暖体假人系统模拟人体散热,从人服系统的稳态和瞬态两种情形对应用TiO2纳米流体液冷服在散热、温控、能耗等性能上与应用水的情形进行对比分析.结果表明:应用TiO2纳米流体的液冷服工作性能受工质进口温度、质量流量和纳米颗粒体积分数的影响很大,通过合理匹配以上参数可以提高液冷服的工作性能;若上述参数匹配不当,则将导致液冷服的工作性能恶化,甚至出现低于应用传统工质水的情形.在该实验条件下,当纳米颗粒体积分数为2%,入口温度为15 ℃,质量流量为1 000~1 400 g/min时,液冷服的散热能力比以水为工质时提高6%;所需的泵耗显著降低,为水的0.70~0.80倍;人服系统温度分布和液冷服抗热负荷能力均有所改善.

Abstract:

The experimental study for the performance of liquid cooling garment (LCG) with the application of TiO2 nanofluids was conducted in order to better understand and utilize the characteristics of enhancing heat transfer for nanofluids applied in LCG. A thermal manikin system was employed to simulate heating from a human body. The performance of the LCG with TiO2 nanofluids as the working fluid was compared with water by a variety of aspects such as heat dissipation, temperature control and pump power consumption under both steady state and transient conditions. Experimental results show that the inlet temperature, mass flow rate and volume fraction of TiO2 nanofluids are three key parameters affecting the performance of the LCG, which can be significantly enhanced by a proper combination of these parameters. If the parameters not matching, the performance of the LCG will deteriorate or even be worse than that using water as the working fluid. When the inlet temperature, mass flow rate and volume fraction of TiO2 nanofluids were selected as 15 ℃, 1 000~1 400 g/min and 2% respectively, the heat dissipation of the LCG was enhanced by up to 6% compared with using water. The pump power declined about 0.70~0.80 times of water. Both the temperature distribution in the thermal manikin LCG system and the capability for adapting abrupt heat load change were improved.

出版日期: 2016-04-01
:  TK 124  
基金资助:

国家自然科学基金资助项目(50436020);中国博士后科学基金资助项目(20100470187). 

通讯作者: 林贵平,男,教授. ORCID:0000 0002 7972 994X.     E-mail: gplin@buaa.edu.cn
作者简介: 王涛(1978—),男,博士生,从事制冷与低温和环境控制等研究.ORCID:0000 0002 7912-8204. E-mail: wangjiyuanwpt@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.012.

WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.012        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/681

[1] SAIDUR R, LEONG K, MOHAMMAD H. A review on applications and challenges of nanofluids [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1646-1668.
[2] VERMA S K, TIWARI A K. Progress of nanofluid application in solar collectors: a review [J]. Energy Conversion and Management, 2015, 100: 324-346.
[3] HUMINIC G, HUMINIC A. Application of nanofluids in heat exchangers: a review [J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5625-5638.
[4] RAFATI M, HAMIDI A A, SHARIATI NIASER M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids) [J]. Applied Thermal Engineering, 2012, 4546: 9-14.
[5] PEYGHAMBARZADEH S M, HASHEMABADI S H, NARAKI M, et al. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator [J]. Applied Thermal Engineering, 2013, 52(1): 8-16.
[6] KASAEIAN A, ESHGHI A, SAMETI M. A review on the applications of nanofluids in solar energy systems [J]. Renewable and Sustainable Energy Reviews, 2015, 43(2015): 584-598.
[7] SAID Z, SABIHA M, SAIDUR R, et al. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant [J]. Journal of Cleaner Production, 2015, 92(2015): 343-353.
[8] KHAN J, MUSTAFA M, HAYAT T, et al. On model for three dimensional flow of nanofluid: an application to solar energy [J]. Journal of Molecular Liquids, 2014, 194(2014): 41-47.
[9] LIU Zhen hua, LI Yuan yang. A new frontier of nanofluid research: application of nanofluids in heat pipes [J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6786-6797.
[10] RIEHL R R, DOS SANTOS N. Water copper nanofluid application in an open loop pulsating heat pipe [J]. Applied Thermal Engineering, 2012, 42(2012): 6-10.
[11] MASHAEI P R, SHAHRYARI M. Effect of nanofluid on thermal performance of heat pipe with two evaporators: application to satellite equipment cooling [J]. Acta Astronautica, 2015, 111: 345-355.
[12] SALEH R, PUTRA N, WIBOWO R, et al. Titanium dioxide nanofluids for heat transfer applications [J]. Experimental Thermal and Fluid Science, 2014, 52(2014): 19-29.
[13] HADAD K, RAHIMIAN A, RABIEE A. Nanofluid application in post SB LOCA transient in VVER 1000 NPP [J]. Annals of Nuclear Energy, 2015, 79(2015): 101-110.
[14] LI Yan jiao, ZHOU Jing en, TUNG S, et al. A review on development of nanofluid preparation and characterization [J]. Powder Technology, 2009, 196(2): 89-101.
[15] FEDELE L, COLLA L, BOBBO S. Viscosity and thermal conductivity measurements of water based nanofluids containing titanium oxide nanoparticles [J]. International Journal of Refrigeration Revue Internationale Du Froid, 2012, 35(5): 1359-1366.
[16] SIDIK N, MOHAMMED H, ALAWI O, et al. Areview on preparation methods and challenges of nanofluids [J]. International Communications in Heat and Mass Transfer, 2014, 54(2014): 115-125.
[17] DUANGTHONGSUK W, WONGWISES S. Measurement of temperature dependent thermal conductivity and viscosity of TiO2 water nanofluids [J]. Experimental Thermal and Fluid Science, 2009, 33(4):706-714.
[18] GHADIMI A, SAIDUR R, METSELAAR H. Areview of nanofluid stability properties and characterization in stationary conditions [J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18):4051-4068.
[19] WANG Xian ju, ZHU Dong sheng, YANG Shuo.Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids [J]. Chemical Physics Letters, 2009, 470(1 3): 107-111.
[20] HADDAD Z, ABID C, OZTOP H, et al. A review on how the researchers prepare their nanofluids [J].International Journal of Thermal Sciences, 2014,76(2014): 168-189.
[21] UTOMO A, POTH H, ROBBINS P, et al. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids [J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7772-7781.
[22] MURSHED S M S, LEONG K C, YANG C.Enhanced thermal conductivity of TiO2 water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 44(2005): 367-373.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[7] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.