Please wait a minute...
浙江大学学报(工学版)
能源与环境工程     
球形容器内复合相变材料的约束熔化传热过程
刘闵婕1,朱子钦1,许粲羚1,范利武1,陆海1,2,俞自涛1,3
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027; 2. 云南电力实验研究院(集团)有限公司 电力研究院,云南 昆明 650217; 3.浙江省制冷与低温技术重点实验室,浙江 杭州 310027
Constrained melting heat transfer of composite phase change materials inside  spherical container
LIU Min jie1, ZHU Zi qin1, XU Can ling1, FAN Li wu1, LU Hai1,2, YU Zi tao1,3
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;2. Electric Power Research Institute, Yunnan Electric Power and Research Institute (Group), Kunming 650217, China;3.Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China
 全文: PDF(1021 KB)   HTML
摘要:

为评估高导热填料对复合相变材料熔化传热过程的影响,采用实验方法定量分析典型球形容器中添加石墨纳米片的十二醇基复合相变材料的约束熔化传热过程.以熔化过程中的瞬时质量熔化率为比较对象,对石墨纳米片的质量分数和恒温加热边界条件进行参数化研究.实验结果表明,随着质量分数的增加,复合相变材料的熔化传热过程从以自然对流为主导逐渐转变为以导热为主导.在所研究的工况范围内,虽然复合相变材料的导热系数有一定程度的提高,但不足以弥补黏度增长所引起的自然对流削弱效应,反而使得熔化过程有所减缓.通过数据拟合得到了熔化率随傅里叶数、斯蒂芬数和格拉晓夫数等特征无量纲数变化的实验关联式,其预测结果的误差小于15%.

Abstract:

The constrained melting heat transfer of dodecanol based composite phase change materials (PCM) with addition of graphite nanoplatelets inside a spherical container, as a typical shape, was analyzed quantitatively by experiments in order to examine the influence of highly conductive fillers on melting heat transfer of composite PCM. By adopting the transient melt fraction by mass during melting as a means for comparison, a parametric study was conducted on the mass fraction of graphite nanoplatelets as well as the isothermal heating boundary condition. Results show that the melting heat transfer of the composite PCM experiences a transition from convection dominated to conduction dominated with the mass fraction increasing. And within the studied cases, although the thermal conductivity of the composite PCM is enhanced to some extent, such enhancement is not sufficient to compensate the loss of natural convection due to the increased viscosity but to slow down the melting process. An experimental correlation for the melt fraction was proposed in terms of the characteristic dimensionless groupings, such as the Fourier, Stefan and Grashof numbers, with predictive deviation less than 15%.

出版日期: 2016-09-18
:  TK 124  
基金资助:

国家科技支撑计划资助项目(2011BAJ03B11);国家自然科学基金资助项目(51276159).

通讯作者: 范利武,男,副教授. ORCID:0000 0001 8845 5058.      E-mail: liwufan@zju.edu.cn
作者简介: 刘闵婕(1992-),女,硕士生,从事相变储热技术研究. ORCID:0000 0002 4355 3823. E-mail: 21427105@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.011.

LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.011        http://www.zjujournals.com/eng/CN/Y2016/V50/I3/477

[1] ZALBA B, MARIN J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23(3): 251283.
[2] DHAIDAN N D, KHODADADI J M. Melting and convection of phase change materials in different shape containers: a review [J]. Renewable and Sustainable Energy Reviews, 2015, 43: 449477.
[3] SAITOH T. Optimum design for latent heat thermal energy storage reservoir [J]. Refrigeration, 1983, 58(670): 749756.
[4] BILIR L, ILKEN Z. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical container [J]. Applied Thermal Engineering, 2005, 25(10): 14881502.
[5] ARCHIBOLD A R, GONZALEZ AGUILAR J, RAHMAN M M, et al. The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells [J]. Applied Energy, 2014, 116: 243252.
[6] RIZAN M Z M, TAN F L, TSO C P. An experimental study of n octadecane melting inside a sphere subjected to constant heat rate at surface [J].International Communications in Heat and Mass Transfer, 2012, 39(10): 16241630.
[7] TAN F L. Constrained and unconstrained melting inside a sphere [J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 466475.
[8] HOSSEINIZADEH S F, DARZI A A, TAN F L, et al. Unconstrained melting inside a sphere [J]. International Journal Thermal Sciences, 2013, 63: 5564.
[9] ASSIS E, KATSMAN L, ZISKIND G, et al. Numerical and experimental study of melting in a spherical shell [J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 17901804.
[10] KHODADADI J M, ZHANG Y. Effects of buoyancy driven convection on melting within spherical containers [J]. International Journal of Heat and Mass Transfer, 2001, 44(8): 16051618.
[11] TAN F L, HOSSEINIZADEH S F, KHODADADI J M, et al. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule [J]. International Journal of Heat and Mass Transfer, 2009, 52(15/16): 34643472.
[12] BARBA A, SPRIGA M. Discharge mode for encapsulated PCMs in storage tanks [J]. Solar Energy, 2003, 74(2): 141148.
[13] 朱子钦, 肖胜蓝, 施松鹤, 等. 相变材料在含翅片球形容器内的约束熔化传热过程[J]. 科学通报, 2015, 60(12): 11251131.
ZHU Zi qin, XIAO Sheng lan, SHI Song he, et al. Constrained melting heat transfer of a phase change material in a finned spherical capsule [J]. Chinese Science Bulletin, 2015, 60(12): 11251131.
[14] KOIZUMI H. Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule) [J]. Applied Thermal Engineering, 2004, 24(17/18): 25832600.
[15] FAN L W, XIAO Y Q, ZENG Y. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM) based heat sink [J]. International Journal of Thermal Sciences, 2013, 70: 114126.
[16] FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 2446.
[17] KHODADADI J M, FAN L, BABAEI H. Thermal conductivity enhancement of nanostructure based colloidal suspensions utilized as phase change materials for thermal energy storage: a review [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 418444.
[18] 王继芬,谢华清,辛忠,等.纳米ZnO/石蜡复合相变的热物理性质研究[J].工程热物理学报,2011, 32,(11):18971899.
WANG Ji fen, XIE Hua qing, XIN Zhong, et al. Study on the thermophysical  properties of  paraffin wax composites containing ZnO nanopartides[J].Journal of Engineering Thermophysics, 2011, 32(11):18971899.
[19] HOSSEINIZADEH S F, DARZI A A, TAN F L. Numerical investigations of uncontrained melting of nano enhanced phase change material (NEPCM) inside a spherical container [J]. International Journal of Thermal Science, 2012, 51: 7783.
[20] HO C J, GAO J Y. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure [J]. International Journal of Heat and Mass Transfer, 2013, 61: 28.
[21] ZENG Y, FAN L W, XIAO Y Q, et al. An experimental investigation of melting of nanoparticle enhanced phase change materials (NePCMs) in a bottom heated vertical cylindrical cavity [J]. International Journal of Heat and Mass Transfer, 2013, 66: 111117.
[22] FAN L W, ZHU Z Q, ZENG Y, et al. Heat transfer during melting of graphene based composite phase change materials heated from below [J]. International Journal of Heat and Mass Transfer, 2014, 79: 94104.
[23] FAN L W, ZHU Z Q, ZENG Y, et al. Unconstrained melting heat transfer in a spherical container revisited in the presence of nano enhanced phase change materials (NePCM) [J]. International Journal of Heat and Mass Transfer, 2016,95:10571069.
[24] 丁晴, 方昕, 闫晨, 等. 石墨纳米片尺寸对复合相变材料储热特性的影响[J]. 化工学报, 2015, 66(6): 20232030.
DING Qing, FANG Xin, YAN Chen, et al. Effects of graphite nanosheet size on thermal storage property of composite PCMs [J]. CIESC Journal, 2015, 66(6): 20232030.
[25] FANG X, FAN L W, DING Q, et al. Increased thermal conductivity of eicosane based composite phase change materials in the presence of graphene nanoplatelets [J]. Energy and Fuels, 2013, 27(7): 40414047.
[26] 丁晴, 方昕, 范利武, 等. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报:工学版, 2015, 49(2): 330335.
DING Qing, FANG Xin, FAN Li wu, et al. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials [J]. Journal of Zhejiang University:Engineering Science, 2015, 49(2): 330335.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[6] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[7] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.