Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
采用单元基光滑点插值法的高温管道热应力分析
刘宜军,鲁欢,张桂勇,宗智
1.大连理工大学 船舶工程学院,辽宁 大连 116024; 
2.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024
Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)
LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi
1. School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China;
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1338 KB)   HTML
摘要:

针对高温管道系统热应力分析中传统有限元方法刚度过硬导致的计算精度差问题,提出单元基光滑点插值法(CS-PIM)引入热应力分析中.该方法采用易于剖分的三角形/四面体背景网格,在单元基础上进行梯度光滑,用点插值法构造形函数.通过二维及三维的算例验证,结果表明,在计算高温管道温度时,基于相同网格的单元基光滑点插值法和传统有限元法的结果收敛率相当,但前者可以取得更高的精度|结果表明,在计算热应力结果时,得益于单元基光滑点插值法可以有效软化模型刚度,计算结果的精度和收敛率都明显高于传统有限元方法.

Abstract:

The cell-based smoothed point interpolation method (CS-PIM) was applied for thermoelastic problems in high temperature pipe system, for which a finite element method (FEM) model generally results in bad accuracy due to the natural overlystiff property. In the scheme of CS-PIM, the computational domain was discretized into triangular/tetrahedron background cells, Then the generalized gradient smoothing operation was conducted upon the cells and shape functions were constructed using the point interpolation method. Both 2D and 3D cases study were conducted .The CS-PIM can obtain similar convergence rate but better accuracy for temperature results than the FEM does with the same mesh. For thermal stress analysis, the method achieves better results about both accuracy and convergence than the traditional FEM owing to the effectively softened stiffness.

出版日期: 2016-11-01
:  TK 124  
基金资助:

 青年千人资助项目(D1007001);国家自然科学基金资助项目(51579042,51379033).

通讯作者: 张桂勇,男,教授. ORCID: 0000-0002-6569-6286.     E-mail: gyzhang@dlut.edu.cn
作者简介: 刘宜军(1991-),男,研究生,从事热传导及热应力无网格等研究. ORCID: 0000-0001-6802-5499. E-mail: liuyijun1000@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.011.

LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM). JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.011        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2113

[1] 邓志伟. 压力管道的工况分析及其对材料性能的要求[J]. 管道技术与设备,2009,04:18-20.
DENG Zhiwei. Analysis on the operating conditions and material requirements of the pressure pipe [J]. Pipeline Technique and Equipment, 2009, 04: 18-20.
[2] HONG Z H, LIU R, LIU W B, et al. A lateral global buckling failure envelope for a high temperature and high pressure (HT/HP) submarine pipeline [J]. Applied Ocean Research, 2015, 51: 117-128.
[3] 黄一东. 高温管道保温材料的选择及应用[J]. 冶金能源,2013,32(4):57-60.
HUANG Yidong. Selection and application for high temperature pipeline insulation materials [J]. Energy for Metallurgical Industry, 2013,32(4): 57-60.
[4] 张志情,姜小龙. 锅炉高温过热器爆管分析[J]. 机电工程技术,2015,44(2):107-110.
ZHANG Zhiqing, JIANG Xiaolong. Analysis of the burst of boiler hightemperature superheater tubes [J]. Mechanical & Electrical Engineering Technology, 2015, 44(2): 107-110.
[5] 颜卫国,俞小莉,陆国栋,等. 热管中冷器的传热与阻力特性[J]. 浙江大学学报:工学版, 2011,45(1):132-135.
YAN Weiguo, YU Xiaoli, LU Guodong, et al. Heat transfer and pressure drop of heat pipe heat exchanger [J]. Journal of Zhejiang University: Engineering Science. 2011, 45(1): 132-135.
[6] 张锋,刘月明,楼俊. 高温压力管道三通接头的应力应变分析及仿真[J]. 中国计量学院学报,2011, 22(4):356-360.
ZHANG Feng, LIU Yueming, LOU Jun. Stress and strain analysis and simulation of high temperature pressure pipe tee joint [J]. Journal China University of Metrology, 2011, 22(4): 356-360.
[7] CHEN车小玉,段梦兰,曾霞光,等. 海底埋设高温管道隆起屈曲数值模拟研究[J]. 海洋工程,2013,31(5): 103-111.
Xiaoyu, DUAN Menglan, ZENG Xiaguang et al. Numerical simulation research on upheaval buckling of high temperature submarine buried pipeline [J]. The Ocean Engineering, 2013,31(5):103-111.
[8] 张颖莉,种道彤,刘继平,等. 方管内混合对流与管壁导热耦合换热的数值模拟[J]. 西安交通大学学报, 2012, 46(5):1924+43.
ZHANG Yingli, CHONG Daotong, LIU Jiping, et al. Numerical investigation on conjugated heat transfer of conduction in wall and mixed convection [J]. Xian Jiaotong University, 2012, 46(5): 1924+43.
[9] ZIENKIEWICZ O C, TAYLOR R L. The finite element method (V1: The Basis) [M]. 5th ed. Oxford: ButterworthHeinemann, 2000: 1663.
[10] LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. Int J Number Meth Eng, 1995, 20(8/9): 1081-1106.
[11] ATLURI S N, SHEN S P. The meshless local petrovgalerkin (MLPG) method [M]. Balboa Blvd, USA∶Tech Science Press, 2002: 232-255.
[12] BELYTSCHKO T, LU Y, GU L. Elementfree Galerkin method [J]. Int J Number Meth Eng, 1994, 37(2): 229-256.
[13] LIU G R, ZHANG G Y. Smoothed point interpolation methods [M]. Singapore: World Scientific Publishing Co. Pte. Ltd, 2013: 237-525.
[14] 陶文铨,吴学红,戴艳俊. 无网格方法在流动和传热问题中的应用[J]. 中国电机工程学报,2010,30(8): 18.
TAO Wenquan, WU Xuehong, DAI Yanjun. Applications of meshless methods in fluid Flow and heat transfer problems [J]. Proceedings of the CSEE, 2010, 30(8): 18.
[15] LIU G R, ZHANG G Y. A normed G space and weakened weak (w2) formulation of a cellbased smoothed point interpolation method [J]. Int J CompmethSing, 2009, 6(1): 147-179.
[16] ZHANG G Y, LIU G R. Meshfree cellbased smoothed point interpolation method using isoparametric PIM shape functions and condensed RPIM shape functions [J]. Int J CompmethSing, 2011, 8(4): 705-730.
[17] BOLEY B A, WEINER J H. Theory of Thermal stress [M]. New York:John Wiley&Sons, 1950.
[18] LIU G R. Meshfree methods: moving beyond the finite element method [M] . 2nd ed. Boca Taton, USA∶CRC press, 2009: 60-81.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[3] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[4] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[7] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.