Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2119-2126    DOI: 10.3785/j.issn.1008-973X.2022.11.002
机械与能源工程     
碳纤维复合材料原位增材制造设备与工艺
洪林1(),栾丛丛1,2,*(),姚鑫骅1,董宁国1,纪毓杨1,牛成成1,丁泽泉1,宋学宇3,4,傅建中1,2
1. 浙江大学 机械工程学院,浙江省三维打印工艺与装备重点实验室,流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学 工程训练中心,浙江 杭州 310058
3. 西北工业大学 航天学院,陕西 西安 710072
4. 中国航天科技集团公司四院 四十一所,陕西 西安 710025
In-situ additive manufacturing equipment and technology of carbon fiber composites
Lin HONG1(),Cong-cong LUAN1,2,*(),Xin-hua YAO1,Ning-guo DONG1,Yu-yang JI1,Cheng-cheng NIU1,Ze-quan DING1,Xue-yu SONG3,4,Jian-zhong FU1,2
1. School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Engineering Training Center, Zhejiang University, Hangzhou 310058, China
3. College of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
4. The 41st Institute, The Fourth Academy of CASA, Xi’an 710025, China
 全文: PDF(3089 KB)   HTML
摘要:

为了实现碳纤维增强热塑性复合材料(CFRTC)高质高效原位增材制造,设计一种激光聚焦加热CFRTC原位增材制造平台,以单向连续碳纤维增强聚醚醚酮热塑性复合材料(T800 CF/PEEK UD)预浸带为原材料开展CFRTC成型工艺相关研究. 制备环形样件进行剪切强度测试表征,通过扫描电子显微镜观察样件的截面形貌,确立激光聚焦加热CF/PEEK的可行工艺参数窗口与较优工艺参数. 结果表明,CF/PEEK成型件强度受激光聚焦加热温度、成型速度影响较大,均表现出随激光聚焦加热温度与成型速度的增加,先增大后减小,当成型速度为30 mm/s和激光加热温度为450 ℃时,环形样件有较高的剪切强度,并且表现出较少的微观缺陷.

关键词: 激光聚焦加热碳纤维CF/PEEK热塑性复合材料原位增材制造    
Abstract:

A laser-assisted in-situ additive manufacturing platform for carbon fiber reinforced thermoplastic composites (CFRTC) was designed to achieve high quality and effcient in-situ additive manufacturing of CFRTC. The manufacturing process parameters were investigated by taking example of contimuaus carbon fiber reinforced thermoplastics T800 CF/PEEK UD prepreg strip. The several circle specimens were prepared to measure the shear strength and the cross-sectional morphology of the specimen was observed through a scanning electron microscope, which helped to determine the feasibility parameters range and optimal process parameters. The results showed that the strength of the manufactured CF/PEEK parts was greatly affected by the temperature and speed. The shear strength increased at first and then decreased with the increase of both the temperature and speed. The maximum of shear strength as well as the minimum micro-defect were achieved when the temperature was 450 ℃ and the speed was 30 mm/s.

Key words: laser focused heating    carbon fiber    CF/PEEK    thermoplastic composites    in-situ additive manufacturing
收稿日期: 2022-01-20 出版日期: 2022-12-02
CLC:  TH 16  
基金资助: 国家自然科学基金资助项目(52175440,51905478);浙江省重点研发计划资助项目(2020C01069)
通讯作者: 栾丛丛     E-mail: 21925015@zju.edu.cn;lccshdg@zju.edu.cn
作者简介: 洪林(1996 —),男,硕士生,从事复合材料增材制造研究. orcid.org/0000-0002-7231-1364. E-mail: 21925015@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
洪林
栾丛丛
姚鑫骅
董宁国
纪毓杨
牛成成
丁泽泉
宋学宇
傅建中

引用本文:

洪林,栾丛丛,姚鑫骅,董宁国,纪毓杨,牛成成,丁泽泉,宋学宇,傅建中. 碳纤维复合材料原位增材制造设备与工艺[J]. 浙江大学学报(工学版), 2022, 56(11): 2119-2126.

Lin HONG,Cong-cong LUAN,Xin-hua YAO,Ning-guo DONG,Yu-yang JI,Cheng-cheng NIU,Ze-quan DING,Xue-yu SONG,Jian-zhong FU. In-situ additive manufacturing equipment and technology of carbon fiber composites. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2119-2126.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.002        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2119

图 1  机器人辅助激光聚焦加热CFRTC原位增材制造平台
图 2  原位成型设备结构
图 3  激光光斑形状
参数 数值
树脂质量分数/% 34±3
单层厚度/mm 0.24±0.02
宽度/mm 6.35
树脂玻璃化转变温度/℃ 143
树脂熔融温度/℃ 343
表 1  CF/PEEK预浸带基础参数
图 4  不同激光温度照射CF/PEEK预浸带表面形貌
图 5  环形样件成型过程与成型样件
图 6  标准环形测试试样
图 7  聚合物基复合材料短梁剪切强度测试系统
图 8  成型速度30 mm/s、激光加热温度450 ℃时不同试样载荷-位移曲线
图 9  样件失效形式是弯曲断裂及分层破坏
图 10  激光加热温度-层间剪切强度综合曲线
图 11  成型速度-层间剪切强度综合曲线
图 12  激光加热温度与成型速度对剪切强度综合影响曲面
图 13  激光加热温度450 ℃不同成型速度环形试样截面微观形貌
图 14  成型速度30 mm/s、激光加热温度450 ℃时CF/PEEK原位成型制造样件
1 SRIVASTAVA R, UPRETI M, AWASTHI M Biosusceptibility studies on carbon fiber composites for aerospace applications[J]. Indian Journal of Engineering and Materials Sciences, 2003, 10 (2): 143- 147
2 包建文, 蒋诗才, 张代军 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36 (19): 52- 63
BAO Jian-wen, JIANG Shi-cai, ZHANG Dai-jun Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science and Technology Review, 2018, 36 (19): 52- 63
3 曹忠亮, 富宏亚, 付云忠, 等 基于自动铺放技术的热塑性复合材料原位固化成型研究进展: 热传导行为及层间性能[J]. 材料导报, 2019, 33 (5): 894- 900
CAO Zhong-liang, FU Hong-ya, Fu Yun-zhong, et al A review of tobotic prepreg placement and in-situ consolidation for manufacturing fiber-reinforced thermoplastic composites: heat transfer behavior and interlaminar properties[J]. Materials Reports, 2019, 33 (5): 894- 900
doi: 10.11896/cldb.201905022
4 杜善义 复合材料创新驱动产业发展[J]. 科技导报, 2016, 34 (8): 1
DU Shan-yi Innovation in composite materials drives industrial development[J]. Science and Technology Review, 2016, 34 (8): 1
5 MARSH G Automating aerospace composites production with fiber placement[J]. Reinforced Plastics, 2011, 55 (3): 32- 37
doi: 10.1016/S0034-3617(11)70075-3
6 NEHA Y, AMAR P A review on additive manufacturing of polymers composites[J]. Materials Today: Proceedings, 2021, 44: 4150- 4157
doi: 10.1016/j.matpr.2020.10.490
7 PARANDOUSH P, LIN D A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182: 36- 53
doi: 10.1016/j.compstruct.2017.08.088
8 张力, 张以河, 王雷, 等 热固性树脂基复合材料的资源化再利用进展[J]. 复合材料科学与工程, 2018, 8: 106- 113
ZHANG Li, ZHANG Yi-he, WANG Li, et al Progress in resource reclamation of thermoset polymer composites[J]. Composites Science and Engineering, 2018, 8: 106- 113
9 HOFSTÄTTER T, PEDERSEN D, TOSELLO G, et al Applications of fiber-reinforced polymers in additive manufacturing[J]. Procedia CIRP, 2017, 66: 312- 316
doi: 10.1016/j.procir.2017.03.171
10 秦滢杰, 韩建平, 赵凯 热塑性复合材料在线成型设备研究进展[J]. 复合材料科学与工程, 2019, 5: 116- 120
QIN Ying-jie, HAN Jian-ping, ZHAO Kai Developments in on-line procrssing equipment of thermoplastic composites[J]. Composites Science and Engineering, 2019, 5: 116- 120
11 冯喜平, 张盛源, 梁群, 等 热塑性树脂基复合材料激光原位固化研究进展[J]. 中国塑料, 2021, 35 (6): 111- 124
FENG Xi-ping, ZHANG Sheng-yuan, LIANG Qun, et al A review of laser in-situ curing of thermoplastic composites[J]. China Plastics, 2021, 35 (6): 111- 124
12 王磊. 纱架与铺丝头一体化纤维铺放系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 16-31.
WANG Lei. Research on integration technique of creels and fiber placement head for automated fiber placement machine [D]. Harbin: Harbin Institute of Technology, 2015: 16-31.
13 AUGUST Z, OSTRANDER G, MICHASIOW J Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPE Journal, 2014, 50 (2): 30- 37
14 FUJIHARA K, HUANG Z, RAMAKRISHNA S, et al Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites[J]. Composites Science and Technology, 2004, 64 (16): 2525- 2534
doi: 10.1016/j.compscitech.2004.05.014
15 王凯, 刘寒松, 肇研 连续纤维增强热塑性树脂基复合材料自动铺放技术研究进展[J]. 航空制造技术, 2021, 64 (11): 41- 49
WANG Kai, LIU Han-song, ZHAO Yan Advance in automated fiber placement technology on continuous fiber reinforced thermoplastic resin matrix composites[J]. Aeronautical Manufacturing Technology, 2021, 64 (11): 41- 49
16 陈吉平, 李岩, 刘卫平, 等 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36 (4): 784- 794
CHEN Ji-ping, LI Yan, LIU Wei-ping, et al Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica, 2019, 36 (4): 784- 794
17 GROGAN D, BRÁDAIGH C, MCGARRY J, et al Damage and permeability in tape-laid thermoplastic composite cryogenic tanks[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 390- 402
doi: 10.1016/j.compositesa.2015.08.037
18 邵忠喜, 韩振宇, 李玥华, 等 纤维铺放设备中丝束增减控制方法及其比较[J]. 航空学报, 2011, 32 (1): 164- 171
SHAO Zhong-xi, HAN Zhen-yu, LI Yue-hua, et al Comparative study of tows Increase or decrease methods for fiber placement machine[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (1): 164- 171
19 QURESHI Z, SWAIT T, SCAIFE R, et al In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B: Engineering, 2014, 66: 255- 267
doi: 10.1016/j.compositesb.2014.05.025
20 GAO Y, ZHI Q, Lu L, et al Ultrasonic welding of carbon fiber reinforced nylon 66 composite without energy director[J]. Journal of Manufacturing Science and Engineering, 2018, 140 (5): 051009
doi: 10.1115/1.4039113
21 STOKESGRIFFIN C, COMPSTON P An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 190- 197
doi: 10.1016/j.compositesa.2016.05.034
22 GONÇALVES L, DUARTE F, MARTINS C, et al Laser welding of thermoplastics: an overview on lasers, materials, processes and quality[J]. Infrared Physics and Technology, 2021, 119: 103931
23 ANASTASIOS D, DAVID W, MICHAEL E, et al Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106381
doi: 10.1016/j.compositesa.2021.106381
24 韩振宇, 李玥华, 富宏亚, 等 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012, 4 (2): 91- 96
HAN Zhen-yu, LI Yue-hua, FU Hong-ya, et al Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012, 4 (2): 91- 96
doi: 10.3969/j.issn.1001-4381.2012.02.020
25 BEYELER E, PHILLIPS W, GÜÇERI S Experimental investigation of laser-assisted thermoplastic tape consolidation[J]. Journal of Thermoplastic Composite Materials, 1988, 1 (1): 107- 121
doi: 10.1177/089270578800100109
26 KHAN M, MITSCHANG P, SCHLEDJEWSKI R Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process[J]. Journal of Composite Materials, 2013, 47 (4): 485- 499
doi: 10.1177/0021998312441810
27 KOLLMANNSBERGER A, LICHTINGER R, HOHENESTER F, et al Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix[J]. Journal of Thermoplastic Composite Materials, 2018, 31 (12): 1563- 1586
doi: 10.1177/0892705717738304
28 MARTIN M, RODRIGUEZLENCE F, GÜEMES A, et al On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 23- 32
doi: 10.1016/j.compositesa.2018.05.006
29 肖军, 李勇, 李建龙 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008, 1: 50- 53
XIAO Jun, LI Yong, LI Jian-long Application of automatic placement technology in the manufacture of large aircraft composite structural parts[J]. Aeronautical Manufacturing Technology, 2008, 1: 50- 53
doi: 10.3969/j.issn.1671-833X.2008.01.009
30 宋清华, 肖军, 文立伟, 等 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46 (1): 83- 91
SONG Qing-hua, XIAO Jun, WENG Li-wei, et al Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering, 2018, 46 (1): 83- 91
doi: 10.11868/j.issn.1001-4381.2016.000147
31 ZHAO P, SHIRINZADEH B, SHI Y, et al Multi-pass layup process for thermoplastic composites using robotic fiber placement[J]. Robotics and Computer Integrated Manufacturing, 2018, 49: 277- 284
doi: 10.1016/j.rcim.2017.08.005
32 赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 38-48.
ZHAO Zhi-yuan. Research on robot-based placement equipment and progress simulation of thermoplastic composite[D]. Harbin: Harbin Institute of Technology, 2020: 38-48.
[1] 杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.
[2] 栾丛丛, 姚鑫骅, 刘丞哲, 傅建中. 碳纤维-热塑性复合材料三维打印及其自监测[J]. 浙江大学学报(工学版), 2017, 51(9): 1808-1814.
[3] 陈亮亮,祝长生,王萌. 碳纤维护套高速永磁电机热态转子强度[J]. 浙江大学学报(工学版), 2015, 49(1): 162-172.
[4] 诸葛萍, 丁勇, 侯苏伟, 强士中. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 浙江大学学报(工学版), 2014, 48(10): 1822-1827.
[5] 王保俊, 毕刘新, 陈亮亮, 杨平西, 祝长生. 碳纤维绑扎表贴式高速永磁电机转子强度分析[J]. J4, 2013, 47(12): 2101-2110.
[6] 姚谏 朱晓旭 周延阳. 混凝土表层嵌贴CFRP板条的黏结承载力[J]. J4, 2008, 42(1): 34-38.
[7] 谢旭 张鹤 朱越峰 苟昌焕. CFRP拉索在横向风荷载作用下的振动特性[J]. J4, 2008, 42(1): 145-151.
[8] 张治成 谢旭 张鹤. 大跨度斜拉桥钢和碳纤维拉索设计安全系数[J]. J4, 2007, 41(9): 1443-1449.
[9] 黄宛真 张孝彬 卢荻 徐铸德 陈卫祥. 鱼骨状纳米碳纤维嵌脱锂性能的初步研究[J]. J4, 2006, 40(4): 624-628.
[10] 刘继忠 周晓军 华志恒. 碳纤维复合材料孔隙率的脉冲反射法超声衰减测试模型[J]. J4, 2006, 40(11): 1878-1882.
[11] 谢旭 高金盛 苟昌焕 黄剑源. 应用碳纤维索的大跨度斜拉桥结构振动特性[J]. J4, 2005, 39(5): 728-733.
[12] 谢旭 布占宇. 应用碳纤维筋控制桥墩地震损伤方法初探[J]. J4, 2005, 39(10): 1589-1595.
[13] 李贵炳 张爱晖 金伟良. 持载下外贴纤维布加固RC梁抗弯性能研究基于物理的实时人体动画[J]. J4, 2005, 39(1): 70-75.
[14] 王银根 伍连敏 杨骊先 孙柄楠. 混凝土双向板碳纤维布加固的受力性能研究[J]. J4, 2005, 39(1): 81-86.
[15] 苟昌焕 谢旭 高金盛 黄剑源. 应用碳纤维索的大跨度斜拉桥静力学特性分析[J]. J4, 2005, 39(1): 137-142.