Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2109-2118    DOI: 10.3785/j.issn.1008-973X.2022.11.001
机械与能源工程     
基于选择性深度神经网络集成的涡扇发动机剩余寿命预测
韩冬阳1,2(),林泽宇1,郑宇1,郑美妹1,夏唐斌1,2,*()
1. 上海交通大学 机械与动力工程学院,上海 200240
2. 上海交通大学 弗劳恩霍夫协会智能制造项目中心,上海 201306
Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks
Dong-yang HAN1,2(),Ze-yu LIN1,Yu ZHENG1,Mei-mei ZHENG1,Tang-bin XIA1,2,*()
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Fraunhofer Project Center for Smart Manufacturing, Shanghai Jiao Tong University, Shanghai 201306, China
 全文: PDF(1516 KB)   HTML
摘要:

大样本高维度状态监测数据对剩余使用寿命(RUL)精准预测有着技术性挑战,为了提高以航空涡轮风扇发动机为代表的复杂装备的预测精度和收敛效率,提出一种两阶段的选择性深度神经网络集成方法. 第1阶段为多方法联合扰动下的候选集生成方案,通过采用异质神经网络结构、多时间尺度设计和算法参数随机化消除模型内部耦合关系,强化候选深度神经网络集多样性;第2阶段利用遗传算法集成修剪冗余模型,有效剔除性能不佳的冗余学习器,以获取多样化最优候选子集,并按平均集成输出预测结果. 与个体模型的数据实验对比表明,所提方法通过同步增强集成模型准确性和多样性,提升了近20%的RUL预测精度,可为运维决策提供有力支撑.

关键词: 剩余寿命预测选择性集成异质深度神经网络集成多样性涡扇发动机    
Abstract:

The large sample and high-dimensional condition monitoring data has technical challenges for accurate prediction of remaining useful life (RUL). A two-stage selective deep neural network ensemble method based on high-dimensional data was proposed to improve the prediction accuracy and convergence efficiency of complex equipments represented by aviation turbofan engine. The first stage was the candidate set generation scheme under the joint disturbance of multiple methods. By using heterogeneous neural network structure, multi time scale design and algorithm parameter randomization to eliminate the internal coupling relationship of the model, the diversity of candidate deep neural network sets was enhanced. In the second stage, the genetic algorithm was used to integrate pruning redundant models. The method effectively the eliminated redundant learners with poor performance to obtain the diversified optimal candidate subsets and output the prediction results according to the average integration. The final result was estimated by average. The experimental comparison with the data of the individual model shows that the proposed method enhances the accuracy and diversity of the ensemble model and improves the RUL prediction result by nearly 20%, which provides stable support for maintenance decision.

Key words: remaining useful life    selective ensemble learning    heterogeneous deep neural network    ensemble diversity    turbofan engine
收稿日期: 2022-02-16 出版日期: 2022-12-02
CLC:  TH183  
基金资助: 国家自然科学基金资助项目(51875359);教育部-中国移动联合基金建设项目(MCM20180703);上海市“科技创新行动计划”自然科学基金资助项目(20ZR1428600);上海商用飞机系统工程科创中心联合研究基金资助项目(FASE-2021-M7);上海交通大学深蓝计划基金资助项目(SL2021MS008)
通讯作者: 夏唐斌     E-mail: handongyang@sjtu.edu.cn;xtbxtb@sjtu.edu.cn
作者简介: 韩冬阳(1998—),男,硕士生,从事设备衰退预测研究. orcid.org/0000-0002-3711-4744. E-mail: handongyang@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩冬阳
林泽宇
郑宇
郑美妹
夏唐斌

引用本文:

韩冬阳,林泽宇,郑宇,郑美妹,夏唐斌. 基于选择性深度神经网络集成的涡扇发动机剩余寿命预测[J]. 浙江大学学报(工学版), 2022, 56(11): 2109-2118.

Dong-yang HAN,Ze-yu LIN,Yu ZHENG,Mei-mei ZHENG,Tang-bin XIA. Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2109-2118.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.001        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2109

图 1  选择性神经网络集成模型流程
图 2  长短时记忆神经网络
图 3  CNN-LSTM组合神经网络
图 4  遗传算法中个体染色体设置
物理特性描述 单位 物理特性描述 单位
风扇入口总温度 兰氏度 风扇转换转速 r/min
低压压缩机温度 兰氏度 核心机转换转速 r/min
高压压缩机温度 兰氏度 抽汽焓 ?
旁路管道总压强 磅力/平方英寸 需求风扇转速 r/min
高压压缩机压强 磅力/平方英寸 旁通比 ?
低压涡轮温度 兰氏度 燃烧室油气比 ?
风扇进口压强 磅力/平方英寸 需求风扇转换转速 r/min
物理风扇转速 r/min 高压涡轮冷气流量 磅/s
物理核心机转速 r/min 低压涡轮冷气流量 磅/s
发动机压力比 ? 飞行高度 千英尺
高压压缩机静压 磅力/平方英寸 马赫数 ?
燃料流量与静压比 秒脉冲数/
(磅力/平方英寸)
节流器角度 (°)
表 1  涡扇发动机状态参量描述
名称 训练发
动机数
测试发
动机数
训练样
本数
测试样
本数
传感
器数
运行
参数
FD001 100 100 20 630 13 095 21 3
FD003 100 100 24 720 16 596 21 3
表 2  FD001及FD003数据集描述
图 5  衰退、增长及无趋势型传感器信号
图 6  修正后的RUL分段函数
图 7  异质神经网络结构示意
参数 数值
批尺寸 128
训练时期数 100或达到early stopping停止条件
LSTM节点数 [20,40]
卷积核数 [50,100]
卷积核大小 [1,3]
隐蔽层节点数 30
Dropout 0.5
遗传算法初始种群大小 100
终止迭代代数 1 000
交叉概率 0.7
表 3  神经网络与遗传算法关键参数设置
基模型 模型参数量 FLOPs/G
LSTM(时间窗30) 34 501 4.72×10?4
CNN-LSTM(60) 74 776 3.53×10?2
CNN(90) 317 417 3.88×10?1
CNN(120) 553 741 5.52×10?1
表 4  各类用于集成的基模型复杂度
测试集名称 $ {\mathit{t}}_{\mathit{i}}\ge 120 $ $ 120 > {\mathit{t}}_{\mathit{i}}\ge 90 $ $ 90 > {\mathit{t}}_{\mathit{i}}\ge 60 $ $ 60 > {\mathit{t}}_{\mathit{i}}\ge 30 $
FD001 63 11 14 12
FD003 65 16 13 6
表 5  FD001与FD003测试集分割后数据量
图 8  不同容量的集成模型实验结果
图 9  验证集上选择过程的收敛分析
图 10  FD001测试集RUL真实值与预测值
预测方法 RMSE SCORE
FD001 FD003 FD001 FD003
Deep-CNN[6] 12.61 12.64 274.00 284.10
Deep-LSTM[25] 16.14 16.18 338.00 852.00
CNN-LSTM[26] 16.13 17.12 303.00 1 420.00
RNN-SPI[27] 13.58 19.16 228.00 1 727.00
MODBNE[15] 15.04 19.41 334.00 683.40
RULCLIPPER[28] 13.27 16.00 216.00 317.00
选择性神经网络集成 12.00 13.08 282.00 314.80
表 6  不同预测方法精度对比
图 11  FD001各测试子集预测RMSE
方法 RMSE SCORE
FD001 FD003 FD001 FD003
LSTM 14.28 16.97 362.00 674.00
CNN 13.32 14.23 324.00 350.00
CNN-LSTM[ 14.01 17.19 354.00 731.00
选择性神经网络集成 12.00 13.08 282.00 314.00
表 7  集成模型与个体学习器预测能力比较
方法 RMSE SCORE
FD001 FD003 FD001 FD003
无多样性方法 12.96 14.47 292.00 340.00
多扰动多样性提升 12.00 13.08 282.00 314.00
表 8  是否包含联合扰动多样性方法结果比较
方法 RMSE SCORE
FD001 FD003 FD001 FD003
无选择过程 12.26 13.99 288.00 343.00
选择性集成 12.00 13.08 282.00 314.00
表 9  是否选择集成过程结果比较
1 XIA T B, DONG Y F, XIAO L, et al Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering and System Safety, 2018, 178 (1): 255- 268
2 雷克兵, 陈自强 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1978- 1985
LEI Ke-bing, CHEN Zi-qiang Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1978- 1985
3 CHEN X W, LIU Z, WANG J Y, et al An adaptive prediction model for the remaining life of an Li-Ion battery based on the fusion of the two-phase wiener process and an extreme learning machine[J]. Electronics, 2021, 10 (5): 540
doi: 10.3390/electronics10050540
4 CELESTINO O, FERNANDO S L, JAVIER R P, et al A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines[J]. Journal of Computational and Applied Mathematics, 2019, 346 (15): 184- 191
5 DEUTSCH J, D HE Using deep learning-based approach to predict remaining useful life of rotating components[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48 (99): 11- 20
6 LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1- 11
7 SAYAH M, GUEBLI D, MASRY Z A, et al Robustness testing framework for RUL prediction Deep LSTM networks[J]. ISA Transactions, 2021, 113 (1): 28- 38
8 KHELIF R, CHEBEL MORELLO B, MALINOWSKI S, et al Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (3): 2276- 2285
doi: 10.1109/TIE.2016.2623260
9 CANNARILE F, BARALDI P, ZIO E An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories[J]. Fuzzy Sets and Systems, 2019, 367 (15): 36- 50
10 ZHOU Z H, WU J, TANG W Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137 (1-2): 239- 263
doi: 10.1016/S0004-3702(02)00190-X
11 刘如辉, 黄炜平, 王凯, 等 半监督约束集成的快速密度峰值聚类算法[J]. 浙江大学学报: 工学版, 2018, 52 (11): 2191- 2200
LIU Ru-hui, HUANG Wei-ping, WANG Kai, et al Semi-supervised constraint ensemble clustering by fast search and find of density peaks[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (11): 2191- 2200
12 HERNÁNDEZ-LOBATO DANIEL, MARTÍNEZ MUÑOZ, A SUÁREZ Statistical instance based pruning in ensembles of independent classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 364- 369
13 LIU Z, DAI Q, LIU N Ensemble selection by GRASP[J]. Applied Intelligence, 2014, 41 (1): 128- 144
doi: 10.1007/s10489-013-0510-0
14 XIA T B, JIANG Y M, ZHUO P C, et al Dual-ensemble multi-feedback neural network for gearbox fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 10
15 ZHANG C, LIM P, QIN A K, et al Multi-objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318
doi: 10.1109/TNNLS.2016.2582798
16 BROWN G, WYATT J, HARRIS R, et al Diversity creation methods: a survey and categorization[J]. Information Fusion, 2005, 6 (1): 5- 20
doi: 10.1016/j.inffus.2004.04.004
17 XIA T B, ZHUO P C, XIAO L, et al Multi-stage fault diagnosis framework for rolling bearing based on OHF Elman AdaBoost-bagging algorithm[J]. Neurocomputing, 2021, 433 (14): 237- 251
18 XIA T B, SHU J Q, XU Y H, et al Multiscale similarity ensemble framework for remaining useful life prediction[J]. Measurement, 2022, 188: 110565
doi: 10.1016/j.measurement.2021.110565
19 李瑶琦, 周鑫, 高卫益, 等 基于Stacking集成学习的急诊患者到达预测[J]. 工业工程与管理, 2019, 24 (6): 180- 187
LI Yao-qi, ZHOU Xin, GAO Wei-yi, et al Emergency patient arrival forecast based on stacking ensemble learning[J]. Industrial Engineering and Management, 2019, 24 (6): 180- 187
doi: 10.19495/j.cnki.1007-5429.2019.06.022
20 XIA T B, SONG Y, ZHENG Y, et al An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182
doi: 10.1016/j.compind.2019.103182
21 许昱晖, 舒俊清, 宋亚, 等 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1937- 1947
XU Yu-hui, SHU Jun-qing, SONG Ya, et al Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1937- 1947
22 KROGH A, VEDELSBY J Neural network ensembles, cross validation, and active learning[J]. Advances in Neural Information Processing Systems, 1995, 7: 231- 238
23 SAXENA A, KAI G, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-9.
24 HEIMES F O. Recurrent neural networks for remaining useful life estimation [C]// Proceedings of the International Conference on Prognostics and Health Management. Washington, D. C. , USA: IEEE, 2008: 1-6.
25 ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// IEEE International Conference on Prognostics and Health Management (ICPHM 2014). Dallas, TX, USA: IEEE, 2017: 88-95.
26 KONG Z, CUI Y, XIA Z, et al Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, 9 (19): 4156
doi: 10.3390/app9194156
27 YU W, KIM I Y, MECHEFSKE C An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering and System Safety, 2020, 199: 106926
[1] 许昱晖,舒俊清,宋亚,郑宇,夏唐斌. 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报(工学版), 2021, 55(10): 1937-1947.
[2] 胡天中,余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864.
[3] 赵胜颖, 高广春. 基于蚁群算法的选择性神经网络集成方法[J]. J4, 2009, 43(09): 1568-1573.