|
|
基于选择性深度神经网络集成的涡扇发动机剩余寿命预测 |
韩冬阳1,2( ),林泽宇1,郑宇1,郑美妹1,夏唐斌1,2,*( ) |
1. 上海交通大学 机械与动力工程学院,上海 200240 2. 上海交通大学 弗劳恩霍夫协会智能制造项目中心,上海 201306 |
|
Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks |
Dong-yang HAN1,2( ),Ze-yu LIN1,Yu ZHENG1,Mei-mei ZHENG1,Tang-bin XIA1,2,*( ) |
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Fraunhofer Project Center for Smart Manufacturing, Shanghai Jiao Tong University, Shanghai 201306, China |
引用本文:
韩冬阳,林泽宇,郑宇,郑美妹,夏唐斌. 基于选择性深度神经网络集成的涡扇发动机剩余寿命预测[J]. 浙江大学学报(工学版), 2022, 56(11): 2109-2118.
Dong-yang HAN,Ze-yu LIN,Yu ZHENG,Mei-mei ZHENG,Tang-bin XIA. Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2109-2118.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.001
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2109
|
1 |
XIA T B, DONG Y F, XIAO L, et al Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering and System Safety, 2018, 178 (1): 255- 268
|
2 |
雷克兵, 陈自强 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1978- 1985 LEI Ke-bing, CHEN Zi-qiang Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1978- 1985
|
3 |
CHEN X W, LIU Z, WANG J Y, et al An adaptive prediction model for the remaining life of an Li-Ion battery based on the fusion of the two-phase wiener process and an extreme learning machine[J]. Electronics, 2021, 10 (5): 540
doi: 10.3390/electronics10050540
|
4 |
CELESTINO O, FERNANDO S L, JAVIER R P, et al A hybrid ARIMA–SVM model for the study of the remaining useful life of aircraft engines[J]. Journal of Computational and Applied Mathematics, 2019, 346 (15): 184- 191
|
5 |
DEUTSCH J, D HE Using deep learning-based approach to predict remaining useful life of rotating components[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48 (99): 11- 20
|
6 |
LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering and System Safety, 2018, 172: 1- 11
|
7 |
SAYAH M, GUEBLI D, MASRY Z A, et al Robustness testing framework for RUL prediction Deep LSTM networks[J]. ISA Transactions, 2021, 113 (1): 28- 38
|
8 |
KHELIF R, CHEBEL MORELLO B, MALINOWSKI S, et al Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (3): 2276- 2285
doi: 10.1109/TIE.2016.2623260
|
9 |
CANNARILE F, BARALDI P, ZIO E An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories[J]. Fuzzy Sets and Systems, 2019, 367 (15): 36- 50
|
10 |
ZHOU Z H, WU J, TANG W Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137 (1-2): 239- 263
doi: 10.1016/S0004-3702(02)00190-X
|
11 |
刘如辉, 黄炜平, 王凯, 等 半监督约束集成的快速密度峰值聚类算法[J]. 浙江大学学报: 工学版, 2018, 52 (11): 2191- 2200 LIU Ru-hui, HUANG Wei-ping, WANG Kai, et al Semi-supervised constraint ensemble clustering by fast search and find of density peaks[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (11): 2191- 2200
|
12 |
HERNÁNDEZ-LOBATO DANIEL, MARTÍNEZ MUÑOZ, A SUÁREZ Statistical instance based pruning in ensembles of independent classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 364- 369
|
13 |
LIU Z, DAI Q, LIU N Ensemble selection by GRASP[J]. Applied Intelligence, 2014, 41 (1): 128- 144
doi: 10.1007/s10489-013-0510-0
|
14 |
XIA T B, JIANG Y M, ZHUO P C, et al Dual-ensemble multi-feedback neural network for gearbox fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 10
|
15 |
ZHANG C, LIM P, QIN A K, et al Multi-objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318
doi: 10.1109/TNNLS.2016.2582798
|
16 |
BROWN G, WYATT J, HARRIS R, et al Diversity creation methods: a survey and categorization[J]. Information Fusion, 2005, 6 (1): 5- 20
doi: 10.1016/j.inffus.2004.04.004
|
17 |
XIA T B, ZHUO P C, XIAO L, et al Multi-stage fault diagnosis framework for rolling bearing based on OHF Elman AdaBoost-bagging algorithm[J]. Neurocomputing, 2021, 433 (14): 237- 251
|
18 |
XIA T B, SHU J Q, XU Y H, et al Multiscale similarity ensemble framework for remaining useful life prediction[J]. Measurement, 2022, 188: 110565
doi: 10.1016/j.measurement.2021.110565
|
19 |
李瑶琦, 周鑫, 高卫益, 等 基于Stacking集成学习的急诊患者到达预测[J]. 工业工程与管理, 2019, 24 (6): 180- 187 LI Yao-qi, ZHOU Xin, GAO Wei-yi, et al Emergency patient arrival forecast based on stacking ensemble learning[J]. Industrial Engineering and Management, 2019, 24 (6): 180- 187
doi: 10.19495/j.cnki.1007-5429.2019.06.022
|
20 |
XIA T B, SONG Y, ZHENG Y, et al An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182
doi: 10.1016/j.compind.2019.103182
|
21 |
许昱晖, 舒俊清, 宋亚, 等 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1937- 1947 XU Yu-hui, SHU Jun-qing, SONG Ya, et al Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1937- 1947
|
22 |
KROGH A, VEDELSBY J Neural network ensembles, cross validation, and active learning[J]. Advances in Neural Information Processing Systems, 1995, 7: 231- 238
|
23 |
SAXENA A, KAI G, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-9.
|
24 |
HEIMES F O. Recurrent neural networks for remaining useful life estimation [C]// Proceedings of the International Conference on Prognostics and Health Management. Washington, D. C. , USA: IEEE, 2008: 1-6.
|
25 |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// IEEE International Conference on Prognostics and Health Management (ICPHM 2014). Dallas, TX, USA: IEEE, 2017: 88-95.
|
26 |
KONG Z, CUI Y, XIA Z, et al Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, 9 (19): 4156
doi: 10.3390/app9194156
|
27 |
YU W, KIM I Y, MECHEFSKE C An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering and System Safety, 2020, 199: 106926
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|