Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2084-2090    DOI: 10.3785/j.issn.1008-973X.2021.11.008
机械工程     
连续碳纤维增强金属基复合材料增材制造工艺
杨立宁(),张永弟,王金业,常宏杰,杨光*()
河北科技大学 机械工程学院,河北 石家庄 050018
Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites
Li-ning YANG(),Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG*()
School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
 全文: PDF(1098 KB)   HTML
摘要:

针对连续碳纤维增强金属基复合材料增材制造工艺开展系统性实验探索,研究结果表明:在对碳纤维进行表面改性后,可以实现打印过程中熔融金属基体与碳纤维的良好浸润复合;送丝速度对单道沉积路径表面质量、路径宽度及其纤维体积分数影响较大,当送丝速度为4 mm/s时,沉积路径表面质量较好,路径宽度约为1.5 mm,碳纤维体积分数约为3.43%;沉积路径搭接率对打印单层表面质量影响较大,当搭接率为50%时,单层表面质量较好;基于优化后的实验参数,实现了连续碳纤维增强金属基复合材料薄壁件以及拉伸样件的直接增材制造,薄壁件内碳纤维与金属基体形成了较好结合,而且连续碳纤维对于复合后材料的抗拉强度起到了显著增强作用.

关键词: 增材制造金属基复合材料连续碳纤维锡铋合金三维直写    
Abstract:

Systematic experimental exploration was carried out for the additive manufacturing process of continuous carbon fiber reinforced metal matrix composites. Results show that the molten metal matrix and the carbon fiber could be well infiltrated and compounded during the printing process after surface modification of the carbon fiber. The wire feeding speed had a great influence on the surface quality, path width and fiber volume fraction of a single deposition path. When the wire feeding speed was 4 mm/s, the surface quality of the single deposition path was good, the deposition path width was about 1.5 mm, and the volume fraction of carbon fiber was about 3.43%. The overlap rate of the deposition path had a great impact on the surface quality of the printed single layer. When the overlap rate was 50%, the surface quality of the printed single layer was relatively good. The additive manufacturing of continuous carbon fiber reinforced metal matrix composite thin-walled parts and tensile samples were realized based on the optimized experimental parameters. The carbon fiber in the thin-walled part formed a good combination with the metal matrix, and the continuous carbon fiber played a significant role in enhancing the tensile strength of the composite material.

Key words: additive manufacturing    metal matrix composite    continuous carbon fiber    Sn-Bi alloy    three dimensional direct writing
收稿日期: 2020-11-30 出版日期: 2021-11-05
CLC:  TH 164  
基金资助: 河北省高等学校科学技术研究资助项目(QN2019219);河北省省级科技计划资助项目(206Z1806G)
通讯作者: 杨光     E-mail: yang_li_ning@126.com;y_guang@126.com
作者简介: 杨立宁(1986—),男,讲师,博士后,从事增材制造技术及装备研究. orcid.org/0000-0003-0194-5762. E-mail: yang_li_ning@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨立宁
张永弟
王金业
常宏杰
杨光

引用本文:

杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.

Li-ning YANG,Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG. Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2084-2090.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.008        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2084

图 1  连续碳纤维增强金属基复合材料增材制造工艺原理
图 2  相邻两沉积路径之间形成搭接区示意图
图 3  碳纤维表面改性及其与金属基体浸渍复合的实验结果图
图 4  镀铜碳纤维冷热循环后质量损失率变化
图 5  不同送丝速度条件下所得复合材料单道沉积路径的形貌
图 6  单道沉积路径断面形貌
图 7  不同送丝速度条件下所得单道沉积路径宽度及其纤维体积分数的变化曲线
图 8  不同搭接率条件下的打印单层表面形貌
图 9  增材制造连续碳纤维增强金属基复合材料薄壁件
图 10  薄壁件内部碳纤维与金属基体结合的微观形貌
图 11  沉积成型、机械加工、拉断样件照片
1 HAGEDORN Y C, BALACHANDRAN N, MEINERSW W, et al SLM of net-shaped high strength ceramics: new opportunities for producing dental restorations[J]. Proceeding of the Solid Freeform Fabrication Symposium, 2011, 10: 536- 546
2 CHLEBUS E, KUZNICKA B, KURZYNOWSKI T, et al Microstructure and mechanical behavior of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62 (5): 488- 495
doi: 10.1016/j.matchar.2011.03.006
3 BUCHBINDER D, SCHLEIFENBAUM H, HEIDRICH S, et al High power selective la-ser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12: 271- 278
doi: 10.1016/j.phpro.2011.03.035
4 李卿, 赵国瑞, 马文有, 等 选区激光熔化成形多孔Ti6Al4V(ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34 (2): 4073- 4076
LI Qing, ZHAO Guo-rui, MA Wen-you, et al Mechanical properties and fracture mechanism of porous Ti6Al4V (ELI) alloy fabricated by selective laser melting[J]. Materials Reports, 2020, 34 (2): 4073- 4076
5 孙靖, 朱小刚, 李鹏, 等 激光体能量密度对激光选区熔化成形TC4钛合金致密化行为的影响[J]. 机械工程材料, 2020, 44 (1): 51- 56
SUN Jing, ZHU Xiao-gang, LI Peng, et al Effect of laser bulk energy density on densification behavior of TC4 titanium alloy by SLM[J]. Materials for Mechanical Engineering, 2020, 44 (1): 51- 56
doi: 10.11973/jxgccl202001009
6 杨威, 陈志国, 汪力, 等 镍基合金Inconel740激光近净成形多方向温度场[J]. 中国有色金属学报, 2018, 28 (8): 1579- 1586
YANG Wei, CHEN Zhi-guo, WANG Li, et al Multi-direction temperature field of Inconel 740 nickel based alloy in laser engineered net shaping[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (8): 1579- 1586
7 郭超, 林峰, 葛文君 电子束选区熔化成形316L不锈钢的工艺研究[J]. 机械工程学报, 2014, 50 (21): 152- 158
GUO Chao, LIN Feng, GE Wen-jun Study on the fabrication process of 316L stain-less steel via electron beam selective melting[J]. Journal of Mechanical Engineering, 2014, 50 (21): 152- 158
doi: 10.3901/JME.2014.21.152
8 晏耐生, 林峰, 齐海波, 等 电子束选区熔化技术中可控振动落粉铺粉系统的研究[J]. 中国机械工程, 2010, 21 (19): 2379- 2382
YAN Nai-sheng, LIN Feng, QI Hai-bo, et al Study on controllable vibration powder spreading system in electron beam selective melting[J]. China Mechanical Engineering, 2010, 21 (19): 2379- 2382
9 杨立宁, 单忠德, 戎文娟, 等 低熔点金属熔融三维直写技术研究[J]. 中南大学学报: 自然科学版, 2018, 49 (10): 2405- 2412
YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, et al Three-dimensional direct writing technology of low melting point molten metal[J]. Journal of Central South University: Science and Technology, 2018, 49 (10): 2405- 2412
doi: 10.11817/j.issn.1672-7207.2018.10.006
10 杨立宁, 单忠德, 戎文娟, 等 锌合金熔融沉积三维打印工艺[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1364- 1369
YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, et al Three-dimensional printing technology of zinc alloy fused and deposition[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1364- 1369
11 单忠德, 杨立宁, 刘丰, 等 金属材料喷射沉积3D打印工艺[J]. 中南大学学报: 自然科学版, 2016, 47 (11): 3642- 3647
SHAN Zhong-de, YANG Li-ning, LIU Feng, et al Three-dimensional printing technology based on metal spray and deposition[J]. Journal of Central South University: Science and Technology, 2016, 47 (11): 3642- 3647
12 KLIFT F V D, KOGA Y, TODOROKI A, et al 3D printing of continuous carbon fiber rein-forced thermo-plastic CFRTP tensile test specimens[J]. Open Journal of Composite Materials, 2016, 6 (1): 18- 27
doi: 10.4236/ojcm.2016.61003
13 JUSTO J, TAVARA L, GARCIAGUZMAN L, et al Characterization of 3D printed long fiber reinforced composite[J]. Composite Structures, 2017, 185: 537- 548
14 CAMINERO M A, CHACON J M, GARCIAMORENO I, et al Impact damage resistance of 3D printed continuous fiber rein-forced thermoplastic composites using fused deposition modelling[J]. Composites, Part B: Engineering, 2018, 148: 93- 103
doi: 10.1016/j.compositesb.2018.04.054
15 TIAN X, LIU T, YANG C, et al Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites, Part A: Applied Science and Manufacturing, 2016, 88: 198- 205
doi: 10.1016/j.compositesa.2016.05.032
16 YANG C, TIAN X, LIU T, et al 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23 (1): 209- 215
doi: 10.1108/RPJ-08-2015-0098
17 单忠德, 范聪泽, 孙启利, 等 纤维增强树脂基复合材料增材制造技术与装备研究[J]. 中国机械工程, 2020, 31 (2): 221- 226
SHAN Zhong-de, FAN Cong-ze, SUN Qi-li, et al Research on additive manufacturing technology and equipment for fiber reinforced resin composites[J]. China Mechanical Engineering, 2020, 31 (2): 221- 226
doi: 10.3969/j.issn.1004-132X.2020.02.007
18 MATSUZAKI R, UEDA M, NAMIKI M, et al Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports, 2016, 6: 23058
doi: 10.1038/srep23058
19 WANG X, TIAN X Y, YIN L X, et al 3D printing of continuous fiber reinforced low melting point alloy matrix composites: mechanical properties and microstructures[J]. Materials, 2020, 13 (16): 1- 15
20 WANG X, TIAN X Y, LIAN Q, et al Fiber traction printing: a 3D printing method of continuous fiber reinforced metal matrix composite[J]. Chinese Journal of Mechanical Engineering, 2020, 33 (11): 1- 11
doi: 10.1186/s10033-020-00447-1
[1] 刘晓伟,陈赟,张思,陈康. FDM型增材制造中送丝机构动态监测与识别[J]. 浙江大学学报(工学版), 2021, 55(3): 548-554.
[2] 孙朝明,孙凯华,王国伟,葛继强,梁恩辅. 增材制造点阵结构的超声共振谱性能表征[J]. 浙江大学学报(工学版), 2021, 55(11): 2076-2083.
[3] 李斌,傅建中. 基于三维T样条的异质材料实体建模与切片[J]. 浙江大学学报(工学版), 2021, 55(1): 135-144.
[4] 杜军,马琛,魏正英. 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1481-1489.
[5] 邵惠锋, 贺永, 傅建中. 增材制造可降解人工骨的研究进展——从外形定制到性能定制[J]. 浙江大学学报(工学版), 2018, 52(6): 1035-1057.
[6] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.