Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1285-1295    DOI: 10.3785/j.issn.1008-973X.2024.06.018
机械工程     
基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断
韩康(),战洪飞*(),余军合,王瑞
宁波大学 机械工程与力学学院,浙江 宁波 315211
Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
Kang HAN(),Hongfei ZHAN*(),Junhe YU,Rui WANG
Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
 全文: PDF(3215 KB)   HTML
摘要:

传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限. 针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模型(DC-MAFFM). 利用空洞卷积的大感受野提取信号特征,同时引入残差连接来减少卷积层上的信息损失,从而有效过滤信号中的噪声;设计改进的多尺度特征提取模块,在不同尺度上捕获互补的诊断特征,同时在各层都进行不同尺度特征融合,充分学习信号的高频和低频特征;利用提出的特征自适应融合模块对不同尺度的特征自适应赋予权重,增强判别特征学习的能力. 在2个轴承数据集上进行验证,结果表明所提模型在噪声和变工况下有较强的诊断能力. 在强噪声情况下,故障诊断准确率分别达到88.08%和75.56%,与其他方法相比有显著优势.

关键词: 故障诊断空洞卷积残差连接多尺度特征提取自适应融合    
Abstract:

The traditional convolutional neural network (CNN) has the limitations of insufficiently extracting features from the original vibration signals and requiring a larger sensory field to fully capture the temporal correlation of the signals in the process of extracting the features when recognizing the fault types. A dilated convolution and enhanced multi-scale adaptive feature fusion model (DC-MAFFM) was proposed considering the inherent multi-scale characteristics of bearing vibration signals. The signal features were extracted using the large receptive field of the dilated convolution, and the residual connection was introduced to reduce the information loss on the convolution layer, so as to effectively filter the noise in the signal. An improved multi-scale feature extraction module was designed to capture complementary diagnostic features at different scales, meanwhile, the different-scale feature fusion was performed at each layer to fully learn the high-frequency and low-frequency features of the signal. The proposed feature adaptive fusion module was used to adaptively assign weights to the features at different scales to enhance the ability of discriminative feature learning. Verification was carried out on two bearing datasets, and results showed that the proposed model had strong diagnostic ability under noise and variable working conditions. In the case of strong noise, the fault diagnosis accuracy reached 88.08% and 75.56%, respectively, which demonstrated that the DC-MAFFM had a significant advantage over other methods.

Key words: fault diagnosis    dilated convolution    residual connection    multi-scale feature extraction    adaptive fusion
收稿日期: 2023-06-10 出版日期: 2024-05-25
CLC:  TP 181  
基金资助: 国家自然科学基金资助项目(71671097); 国家重点研发计划资助项目(2019YFB1707101, 2019YFB1707103); 浙江省省属高校基本科研业务费资助项目(SJLZ2023001); 浙江省公益技术应用研究计划资助项目(LGG20E050010).
通讯作者: 战洪飞     E-mail: 846253284@qq.com;zhanhongfei@nbu.edu.cn
作者简介: 韩康(1997—),男,硕士生,从事数据挖掘研究. orcid.org/0009-0009-0174-0856. E-mail:846253284@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩康
战洪飞
余军合
王瑞

引用本文:

韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.

Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1285

图 1  基于空洞卷积和增强型多尺度特征自适应融合的模型
图 2  空洞卷积模块
图 3  空洞卷积块(i=0, 1, 2)
图 4  残差连接示意图
图 5  改进多尺度特征提取模块
图 6  自适应特征融合模块
结构参数
空洞卷积模块W=9,C=16
池化层S=2,C=16
多尺度特征提取模块m=11,n=7,k=3,a=32,b=16,c=8
自适应特征融合模块v=5,d=2
FC1输入节点数=8192,输出节点数=1024
FC2输入节点数=1024,输出节点数=10
表 1  DC-MAFFM模型各模块参数
图 7  轴承试验台及其示意图
故障类别D/cmNtrainNtest
正常0333142
外圈故障10.0178333142
外圈故障20.0356333142
外圈故障30.0533333142
内圈故障40.0178333142
内圈故障50.0356333142
内圈故障60.0533333142
滚动体故障70.0178333142
滚动体故障80.0356333142
滚动体故障90.0533333142
表 2  12 k驱动端轴承数据集
图 8  原始振动信号曲线
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6646±0.01450.8195±0.01480.8892±0.03000.9236±0.03330.9706±0.0177
WDCNN[15]0.5968±0.01060.7578±0.03640.8665±0.01710.9499±0.00940.9701±0.0172
MSCNN[16]0.7605±0.03520.8549±0.04430.9195±0.02260.9493±0.02510.9774±0.0104
DC0.6346±0.02140.8108±0.01580.8900±0.01390.9410±0.01100.9754±0.0091
Resnet[17]0.7485±0.01110.8654±0.00960.9336±0.00510.9703±0.00640.9904±0.0017
DRSN-CS[18]0.7928±0.01510.8665±0.01930.9423±0.00190.9755±0.01070.9875±0.0059
MA1DCNN[19]0.8019±0.03740.8744±0.02290.9076±0.01400.9537±0.02320.9836±0.0122
DC-MAFFM0.8808±0.00090.9346±0.00730.9639±0.00910.9848±0.00650.9992±0.0010
表 3  12k驱动端轴承数据在不同噪声下8种模型的准确率
故障类别D/cmNsam
L=0 WL=745.7 WL=1491.4 WL=2237.1 W
正常0118118118118
外圈故障10.0178118118118118
外圈故障20.0356118118118118
外圈故障30.0533118118118118
内圈故障40.0178118118118118
内圈故障50.0356118118118118
内圈故障60.0533118118118118
滚动体故障70.0178118118118118
滚动体故障80.0356118118118118
滚动体故障90.0533118118118118
表 4  12k风扇端轴承数据
任务名称Ntrain1Ntest1
A10、1、23
A20、1、32
A30、2、31
A41、2、30
表 5  风扇端轴承在变工况下各任务信息
模 型A
A1A2A3A4
MSCNN-LSTM[14]0.74590.95920.91850.7799
WDCNN[15]0.81190.89880.86020.8242
MSCNN[16]0.89470.92800.95810.8508
DC0.87710.91500.85350.8062
Resnet[17]0.93380.98420.89700.9102
DRSN-CS[18]0.99820.99280.93180.9027
MA1DCNN[19]0.89530.91060.94590.7685
DC-MAFFM0.99770.99990.99830.9447
表 6  变工况下8种模型的准确率
故障类型NtrainNtestNsam
正常09243961320
外圈故障1307132439
内圈故障2307132439
滚动体故障3307132439
表 7  江南大学轴承数据集描述
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6710±0.04020.7157±0.02080.7939±0.01980.8509±0.02160.9107±0.0080
WDCNN[15]0.6396±0.01610.6969±0.01490.7223±0.02290.7703±0.02760.8193±0.0197
MSCNN[16]0.6785±0.01020.6985±0.00990.7497±0.00740.8032±0.00780.8164±0.0143
DC0.6527±0.02120.7164±0.01150.7654±0.01510.8191±0.01820.8544±0.0126
Resnet[17]0.7106±0.01550.7552±0.01160.8231±0.00910.8559±0.00220.9072±0.0084
DRSN-CS[18]0.7437±0.01130.7920±0.01380.8476±0.01550.8760±0.02870.9096±0.0250
MA1DCNN[19]0.6783±0.04740.7597±0.03350.8238±0.01660.8723±0.02700.9172±0.0280
DC-MAFFM0.7556±0.00420.8040±0.00630.8555±0.00980.9077±0.00470.9351±0.0048
表 8  江南大学数据在不同噪声下8种模型的准确率
任务名称Ntrain1Ntest1
B1600、1000800
B2600、8001000
B3800、1000600
表 9  江南大学数据在变工况下各任务信息
模 型A
B1B2B3
MSCNN-LSTM[14]0.86720.81340.7568
WDCNN[15]0.79970.71080.7392
MSCNN[16]0.78420.69350.7317
DC0.83840.75530.7046
Resnet[17]0.86450.82870.7457
DRSN-CS[18]0.90060.84220.7483
MA1DCNN[19]0.86920.80520.7705
DC-MAFFM0.90480.84590.8071
表 10  噪声和变工况下8种模型准确率
模 型A
A1A2A3A4
M10.97710.90030.99750.8206
M20.98630.99670.99790.9136
M30.99240.99860.99740.8986
M40.99720.99740.99680.9062
M50.99730.99890.99760.9301
M60.99760.99990.99830.9447
表 11  所提模型关键部分消融研究
1 PHAM M T, KIM J M, KIM C H Rolling bearing fault diagnosis based on improved GAN and 2-D representation of acoustic emission signals[J]. IEEE Access, 2022, 10: 78056- 78069
doi: 10.1109/ACCESS.2022.3193244
2 肖雄, 肖宇雄, 张勇军, 等 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41 (2): 738- 749
XIAO Xiong, XIAO Yuxiong, ZHANG Yongjun, et al Research on the application of data enhancement method based on two-dimensional grayscale map in motor bearing fault diagnosis[J]. Proceedings of the CSEE, 2021, 41 (2): 738- 749
3 李世晓, 杜锦华, 龙云 基于一维卷积神经网络的机电作动器故障诊断[J]. 电工技术学报, 2022, 37 (Suppl.1): 62- 73
LI Shixiao, DU Jinhua, LONG Yun Fault diagnosis of electromechanical actuators based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2022, 37 (Suppl.1): 62- 73
4 WU C, JIANG P, DING C, et al Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53- 61
doi: 10.1016/j.compind.2018.12.001
5 YE Z, YU J AKSNet: a novel convolutional neural network with adaptive kernel width and sparse regularization for machinery fault diagnosis[J]. Journal of Manufacturing Systems, 2021, 59: 467- 480
doi: 10.1016/j.jmsy.2021.03.022
6 SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 1−9.
7 RAVIKUMAR K N, YADAV A, KUMAR H, et al Gearbox fault diagnosis based on multi-scale deep residual learning and stacked LSTM model[J]. Measurement, 2021, 186: 110099
doi: 10.1016/j.measurement.2021.110099
8 XIAO Y, SHAO H, MIN Z, et al Multiscale dilated convolutional subdomain adaptation network with attention for unsupervised fault diagnosis of rotating machinery cross operating conditions[J]. Measurement, 2022, 204: 112146
doi: 10.1016/j.measurement.2022.112146
9 LIANG H, CAO J, ZHAO X Multi-scale dynamic adaptive residual network for fault diagnosis[J]. Measurement, 2022, 188: 110397
doi: 10.1016/j.measurement.2021.110397
10 BOROVYKH A, BOHTE S, OOSTERLEE C W. Conditional time series forecasting with convolutional neural networks [EB/OL]. (2018-09-17). [2023-01-02]. https://arxiv.org/abs/1703.04691.
11 WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// 2018 IEEE Winter Conference on Applications of Computer Vision . Lake Tahoe: IEEE, 2018: 1451-1460.
12 HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks [C]// Computer Vision-ECCV . Amsterdam: Springer, 2016: 630−645.
13 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
14 CHEN X, ZHANG B, GAO D Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971- 987
doi: 10.1007/s10845-020-01600-2
15 ZHANG W, PENG G, LI C, et al A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17 (2): 425
doi: 10.3390/s17020425
16 JIANG G, HE H, YAN J, et al Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (4): 3196- 3207
17 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770−778.
18 ZHAO M, ZHONG S, FU X, et al Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (7): 4681- 4690
19 WANG H, LIU Z, PENG D, et al Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (9): 5735- 5745
20 SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
[1] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[2] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[3] 袁小平,何祥,王小倩,胡杨明. 基于多层级特征自适应融合的图像分割算法[J]. 浙江大学学报(工学版), 2022, 56(10): 1958-1966.
[4] 牛英杰,苏燕辰,程敦诚,廖家,赵海波,高永强. 高铁接触网U型抱箍螺母故障检测算法[J]. 浙江大学学报(工学版), 2021, 55(10): 1912-1921.
[5] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.
[6] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
[7] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[8] 林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.
[9] 熊昌镇,王润玲,邹建成. 基于多高斯相关滤波的实时跟踪算法[J]. 浙江大学学报(工学版), 2019, 53(8): 1488-1495.
[10] 张政,周学军,王希晨,周媛媛. 缆系水下信息网恒流远供系统短路故障诊断及区间定位方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1190-1197.
[11] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.
[12] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[13] 余建波, 李传锋, 吕靖香. 轴承故障信号的平均组合差值形态滤波分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1845-1853.
[14] 祝文颖, 冯志鹏. 基于迭代Hilbert变换的行星齿轮箱振动信号分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1587-1595.
[15] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.