机械工程 |
|
|
|
|
基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断 |
韩康( ),战洪飞*( ),余军合,王瑞 |
宁波大学 机械工程与力学学院,浙江 宁波 315211 |
|
Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion |
Kang HAN( ),Hongfei ZHAN*( ),Junhe YU,Rui WANG |
Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China |
引用本文:
韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.018
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1285
|
1 |
PHAM M T, KIM J M, KIM C H Rolling bearing fault diagnosis based on improved GAN and 2-D representation of acoustic emission signals[J]. IEEE Access, 2022, 10: 78056- 78069
doi: 10.1109/ACCESS.2022.3193244
|
2 |
肖雄, 肖宇雄, 张勇军, 等 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41 (2): 738- 749 XIAO Xiong, XIAO Yuxiong, ZHANG Yongjun, et al Research on the application of data enhancement method based on two-dimensional grayscale map in motor bearing fault diagnosis[J]. Proceedings of the CSEE, 2021, 41 (2): 738- 749
|
3 |
李世晓, 杜锦华, 龙云 基于一维卷积神经网络的机电作动器故障诊断[J]. 电工技术学报, 2022, 37 (Suppl.1): 62- 73 LI Shixiao, DU Jinhua, LONG Yun Fault diagnosis of electromechanical actuators based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2022, 37 (Suppl.1): 62- 73
|
4 |
WU C, JIANG P, DING C, et al Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53- 61
doi: 10.1016/j.compind.2018.12.001
|
5 |
YE Z, YU J AKSNet: a novel convolutional neural network with adaptive kernel width and sparse regularization for machinery fault diagnosis[J]. Journal of Manufacturing Systems, 2021, 59: 467- 480
doi: 10.1016/j.jmsy.2021.03.022
|
6 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 1−9.
|
7 |
RAVIKUMAR K N, YADAV A, KUMAR H, et al Gearbox fault diagnosis based on multi-scale deep residual learning and stacked LSTM model[J]. Measurement, 2021, 186: 110099
doi: 10.1016/j.measurement.2021.110099
|
8 |
XIAO Y, SHAO H, MIN Z, et al Multiscale dilated convolutional subdomain adaptation network with attention for unsupervised fault diagnosis of rotating machinery cross operating conditions[J]. Measurement, 2022, 204: 112146
doi: 10.1016/j.measurement.2022.112146
|
9 |
LIANG H, CAO J, ZHAO X Multi-scale dynamic adaptive residual network for fault diagnosis[J]. Measurement, 2022, 188: 110397
doi: 10.1016/j.measurement.2021.110397
|
10 |
BOROVYKH A, BOHTE S, OOSTERLEE C W. Conditional time series forecasting with convolutional neural networks [EB/OL]. (2018-09-17). [2023-01-02]. https://arxiv.org/abs/1703.04691.
|
11 |
WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// 2018 IEEE Winter Conference on Applications of Computer Vision . Lake Tahoe: IEEE, 2018: 1451-1460.
|
12 |
HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks [C]// Computer Vision-ECCV . Amsterdam: Springer, 2016: 630−645.
|
13 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
|
14 |
CHEN X, ZHANG B, GAO D Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971- 987
doi: 10.1007/s10845-020-01600-2
|
15 |
ZHANG W, PENG G, LI C, et al A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17 (2): 425
doi: 10.3390/s17020425
|
16 |
JIANG G, HE H, YAN J, et al Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (4): 3196- 3207
|
17 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770−778.
|
18 |
ZHAO M, ZHONG S, FU X, et al Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (7): 4681- 4690
|
19 |
WANG H, LIU Z, PENG D, et al Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (9): 5735- 5745
|
20 |
SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|