自动化技术、信息工程 |
|
|
|
|
基于多层级特征自适应融合的图像分割算法 |
袁小平( ),何祥,王小倩,胡杨明 |
中国矿业大学 信息与控制工程学院,江苏 徐州 221116 |
|
Image segmentation algorithm based on multi-level feature adaptive fusion |
Xiao-ping YUAN( ),Xiang HE,Xiao-qian WANG,Yang-ming HU |
School of Information and Control Engineering , China University of Mining and Technology, Xuzhou 221116, China |
引用本文:
袁小平,何祥,王小倩,胡杨明. 基于多层级特征自适应融合的图像分割算法[J]. 浙江大学学报(工学版), 2022, 56(10): 1958-1966.
Xiao-ping YUAN,Xiang HE,Xiao-qian WANG,Yang-ming HU. Image segmentation algorithm based on multi-level feature adaptive fusion. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1958-1966.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.007
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I10/1958
|
1 |
扈晓君, 杨宝栋. 基于深度学习的医学图像分析综述[J]电子技术与软件工程, 2021(18): 137-138. HU Xiao-jun, YANG Bao-dong. A review of medical image analysis based on deep learning [J]. Electronic Technology and Software Engineering, 2021 (18): 137-138.
|
2 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
3 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
4 |
张娴, 刘玉林, 高智勇 深度学习在医学影像中的应用研究进展[J]. 临床放射学杂志, 2021, 40 (10): 2041- 2044 ZHANG Xian, LIU Yu-lin, GAO Zhi-yong Research advances in the application of deep learning in medical imaging[J]. Journal of Clinical Radiology, 2021, 40 (10): 2041- 2044
|
5 |
CHEN C, QIN C, QIU H, et al Deep learning for cardiac image segmentation: a review[J]. Frontiers in Cardiovascular Medicine, 2020, 7: 25
doi: 10.3389/fcvm.2020.00025
|
6 |
李继凡, 陈硕, 章强 基于U-Net神经网络的多模态MR颈动脉血管成像的分割方法研究[J]. 中华放射学杂志, 2019, (12): 1091- 1095 LI Ji-fan, CHEN Shuo, ZHANG Qiang Study on segmentation method of multimodal MR carotid angiography based on U-Net neural network[J]. Chinese Journal of Radiology, 2019, (12): 1091- 1095
|
7 |
DUAN L, XIONG X, LIU Q, et al Field rice panicle segmentation based on deep full convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (12): 202- 209
|
8 |
ZHOU Z, SIDDIQUEE M, TAJBAKHSH N, et al. Unet++: a nested Unet architecture for medical image segmentation [M]// Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2018: 3-11.
|
9 |
TAN L, MA W, XIA J, et al Multimodal magnetic resonance image brain tumor segmentation based on ACU-net network[J]. IEEE Access, 2021, 9: 14608- 14618
doi: 10.1109/ACCESS.2021.3052514
|
10 |
TREBING K, STANCZYK T, MEHRKANOON S SmaAt-U-net: precipitation nowcasting using a small attention-U-net architecture[J]. Pattern Recognition Letters, 2021, (145): 275- 289
|
11 |
CAO K, ZHANG X An improved Res-UNet model for tree species classification using airborne high-resolution images[J]. Remote Sensing, 2020, 12 (7): 1128- 1135
doi: 10.3390/rs12071128
|
12 |
HE N, FANG L, PLAZA A Hybrid first and second order attention U-net for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63 (4): 346- 362
|
13 |
赵小虎, 李晓, 叶圣, 等 基于改进U-Net网络的多尺度番茄病害分割算法[J]. 计算机工程与应用, 2022, 58 (10): 216- 223 ZHAO Xiao-hu, LI Xiao, YE Sheng, et al Multiscale tomato disease segmentation algorithm based on improved U-Net network[J]. Computer Engineering and Application, 2022, 58 (10): 216- 223
doi: 10.3778/j.issn.1002-8331.2105-0201
|
14 |
周涛, 董雅丽, 霍兵强, 等 U-Net网络医学图像分割应用综述[J]. 中国图象图形学报, 2021, 26 (9): 2058- 2077 ZHOU Tao, DONG Ya-li, HUO Bing-qiang, et al A review of U-Net network medical image segmentation applications[J]. Journal of Image and Graphics, 2021, 26 (9): 2058- 2077
|
15 |
MINAEE S, BOYKOV Y Y, PORIKLI F, et al Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 40 (7): 3523- 3542
|
16 |
冯婷婷, 葛华勇, 孙家慧 一种基于SSD与FRN相结合的密集连接行人检测算法[J]. 信息技术与网络安全, 2020, 39 (12): 56- 60 FENG Ting-ting, GE Hua-yong, SUN Jia-hui A densely connected pedestrian detection algorithm based on the combination of SSD and FRN[J]. Information Technology and Network Security, 2020, 39 (12): 56- 60
|
17 |
ARORA R, SAINI I, SOOD N. Modified UNet++ model: a deep model for automatic segmentation of lungs from chest X-ray images [C]// 2021 2nd International Conference on Secure Cyber Computing and Communications. Shanghai: IEEE, 2021: 166-169.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|