Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2034-2037    DOI: 10.3785/j.issn.1008-973X.2009.11.016
生物医学工程     
基于Hough变换的斑马鱼胚胎图像分析技术
许晓燕1,夏顺仁1,LIU Tian-ming2,WONG Stephen T C2
(1.浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027;2.生物信息学中心,神经变性修复哈佛中心,哈佛医学院,波斯顿,美国)
Hough transformation based analysis technique for zebrafish embryo images
XU Xiao-yan1, XIA Shun-ren1, LIU Tian-ming2, WONG Stephen T C2
(1. Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
2. Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, Boston, USA)
 全文: PDF(633 KB)   HTML
摘要:

在拼接后的斑马鱼胚胎显微图像基础上提出胚胎图像分析算法,以确定斑马鱼胚胎的3个形态特征:长度、头-干夹角以及尾部弯曲度.采用形态学方法将斑马鱼胚胎从背景中分割出来,然后采用二值细化算法提取它的中心线,最后测量上述形态特征.在测量尾部弯曲度时,采用环形Hough变换法去除胚胎头部,再由最小面积法将尾部曲线回归成一条直线,引入表示尾部曲线与回归直线间平均距离的均方根误差来表征尾部的弯曲度.实验结果表明,该自动分析技术处理速度较快,可以获得准确的形态参数值.

Abstract:

An analysis technique based on patched zebrafish embryo microscopic images was proposed to develop a computerized tool for zebrafish image analysis and quantitation. Three morphological features: lengths, head-trunk angles and tail curvatures of zebrafish embryos were obtained. First, morphological operations were used to segment the zebrafish embryo from the background. Then, its central line was extracted by using the binary image thinning algorithm. At last, three features were calculated. As for the tail curvatures, the modified circular Hough transformation was applied to remove the head of the fish, then the curved skeleton of the tail was regressed onto a straight line by using the least area method. The root mean squared error (RMSE) which represented the averaged distance between the skeleton curve and the regressed line was used as the third feature. Experimental results show that the computerized analysis technique has high accuracy and runs fast.

出版日期: 2009-11-01
:  TP 391.41  
基金资助:

国家安全重大基础研究资助项目(5132103ZZT14B);国家自然科学基金资助项目(60772092).

通讯作者: 夏顺仁,男,教授.     E-mail: srxia@zju.edu.cn
作者简介: 许晓燕(1985-),女,江苏南通人,硕士生,从事生物医学信息学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

许晓燕, 夏顺仁, LIU Tian-ming, 等. 基于Hough变换的斑马鱼胚胎图像分析技术[J]. J4, 2009, 43(11): 2034-2037.

HU Xiao-Yan, JIA Shun-Ren, LIU Tian-ming, et al. Hough transformation based analysis technique for zebrafish embryo images. J4, 2009, 43(11): 2034-2037.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.11.016        http://www.zjujournals.com/eng/CN/Y2009/V43/I11/2034

[1] PENBERTHY W T, SHAFIZADEH E, LIN S. The zebrafish as a model for human disease [J]. Frontiers in Bioscience, 2002, 7: D1439-D1453.
[2] STERN H M, ZON L I. Cancer genetics and drug discovery in the zebrafish [J]. Nature Reviews Cancer, 2003, 3(7): 533-539.
[3] PATTON E E, ZON L I. The art and design of genetic screens: zebrafish [J]. Nature Reviews Genetics, 2001, 2(12): 956-966.
[4] STREISINGER G, WALKER C, DOWER N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio) [J]. Nature, 1981, 291(5813): 293-296.
[5] BENALI A, LEEFKEN I, EYSEL U, et al. A computerized image analysis system for quantitative analysis of cells in histological brain sections [J]. Journal of Neuroscience Methods, 2003, 125(1/2): 33-43.
[6] KLIMASCHEWSKI L, NINDL W, PIMPL M, et al. Biolistic transfection and morphological analysis of cultured sympathetic neurons [J]. Journal of Neuroscience Methods, 2002, 113(1): 63-71.
[7] KIMMEL C B, BALLARD W W, KIMMEL S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253-310.
[8] LAM L, LEE S W, SUEN C Y. Thinning methodologies: a comprehensive survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(9): 869-885.
[9] LIU Tian-ming, LU Jian-feng, YE Wang, et al. Computerized image analysis for quantitative neuronal phenotyping in zebrafish [J]. Journal of Neuroscience Methods, 2006, 153(2): 190-202.
[10] JAIN A K. Fundamentals of digital image processing [M]. Englewood Cliffs: Prentice-Hall, 1989:342-430.
[11] HOUGH P V C. Machine analysis of bubble chamber pictures [C]∥International Conference on High Energy Accelerators and Instrumentation. Geneva: CERN, 1959: 554-556.
[12] 丁勇. 直线回归的最小面积法[J]. 工程数学学报, 2003, 20(3): 139-142.
DING Yong. Least area method for linear regression [J]. Chinese Journal of Engineering Mathematics, 2003, 20(3): 139-142.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[3] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[4] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[5] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[6] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[7] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[8] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[11] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[12] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[13] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[14] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[15] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.