[1] JOSKOWICZ L. Computer-aided surgery meets predictive, preventive, and personalized medicine[J]. EPMA Journal, 2017, 8(1):1-4.
[2] MISE Y, HASEGAWA K, SATOU S, et al. How has virtual hepatectomy changed the practice of liver surgery? Experience of 1194 virtual hepatectomy before l[J]. Annals of Surgery, 2018, 268(1):127-133.
[3] WEI L, ZHU Z J, LV Y, et al. Application of computer-assisted three-dimensional quantitative assessment and a surgical planning tool for living donor liver transplantation[J]. Chinese Medical Journal, 2013, 126(7):1288-1291.
[4] MARESCAUX J, DIANA M. Next step in minimally invasive surgery:hybrid image-guided surgery[J]. Journal of Pediatric Surgery, 2015, 50(1):30-36.
[5] ZHU M, ANG C L, YEO S J, et al. Minimally invasive computer-assisted total knee arthroplasty compared with conventional total knee arthroplasty:a prospective 9-year follow-up[J]. The Journal of Arthroplasty, 2016, 31(5):1000-1004.
[6] NAKAYAMA Y, LI Q, KATSURAGAWA S, et al. Automated hepatic volumetry for living related liver transplantation at multisection CT[J]. Radiology, 2006, 240(3):743-748.
[7] COOTES T F, HILL A, TAYLOR C J, et al. The use of active shape models for locating structures in medical images[C]//Biennial International Conference on Information Processing in Medical Imaging. Flagstaff:Springer, 1993:33-47.
[8] HEIMANN T, GINNEKEN B V, STYNER M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8):1251-1265.
[9] KAINMÜLLER D, LANGE T, LAMECKER H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:109-116.
[10] HEIMANN T, MEINZER H, WOLF I. A statistical deformable model for the segmentation of liver CT volumes[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:161-166.
[11] SADDI K A, ROUSSON M, CHEFD'HOTEL C, et al. Global-to-local shape matching for liver segmentation in CT imaging[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:207-214.
[12] SHI C, CHENG Y, LIU F, et al. A hierarchical local region-based sparse shape composition for liver segmentation in CT scans[J]. Pattern Recognition, 2016, 50:88-106.
[13] ZHANG S, ZHAN Y, DEWAN M, et al. Towards robust and effective shape modeling:Sparse shape composition[J]. Medical Image Analysis, 2012, 16(1):265-277.
[14] WANG X, ZHENG Y, GAN L, et al. Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM)[J]. PLOS ONE, 2017, 12(10):1-23.
[15] SHI C, CHENG Y, WANG J, et al. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation[J]. Medical Image Analysis, 2017, 38:30-49.
[16] WANG J, CHENG Y, GUO C, et al. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(5):817-826.
[17] DING X, GENG X, JIANG C, et al. Fast automated liver delineation from computational tomography angiography[J]. Procedia Computer Science, 2016, 90:87-92.
[18] LIAO M, ZHAO Y Q, LIU X Y, et al. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching[J]. Computer methods and programs in biomedicine, 2017, 143:1-12.
[19] LI G, CHEN X, SHI F, et al. Automatic liver segmentation based on shape constraints and deformable graph cut in CT images[J]. IEEE Transactions on Image Processing, 2015, 24(12):5315-5329.
[20] BOYKOV Y, FUNKA-LEA G. Graph cuts and efficient ND image segmentation[J]. International Journal of Computer Vision, 2006, 70(2):109-131.
[21] PENG J, HU P, LU F, et al. 3D liver segmentation using multiple region appearances and graph cuts[J]. Medical Physics, 2015, 42(12):6840-6852.
[22] BEN-COHEN A, DIAMANT I, KLANG E, et al. Fully convolutional network for liver segmentation and lesions detection[C]//International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Athens:Springer, 2016:77-85.
[23] CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens:Springer, 2016:415-423.
[24] DOU Q, CHEN H, JIN Y, et al. 3D deeply supervised network for automatic liver segmentation from CT volumes[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens:Springer, 2016:149-157.
[25] BEICHEL R, BAUER C, BORNIK A, et al. Liver segmentation in CT data:a segmentation refinement approach[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:235-245.
[26] DAWANT B M, LI R, LENNON B, et al. Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:215-221.
[27] BECK A, AURICH V. HepaTux-a semiautomatic liver segmentation system[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:225-233.
[28] YANG X, YU H C, CHOI Y, et al. A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1):69-79.
[29] SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4):1591-1595.
[30] HSU C, YANG C, WANG H. Multi-threshold level set model for image segmentation[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010:1-8.
[31] YAMAGUCHI S, SATAKE K, YAMAJI Y, et al. Three-dimensional semiautomatic liver segmentation method for non-contrast computed tomography based on a correlation map of locoregional histogram and probabilistic atlas[J]. Computers in Biology and Medicine, 2014, 55:79-85.
[32] CHARTRAND G, CRESSON T, CHAV R, et al. Liver segmentation on CT and MR using laplacian mesh optimization[J]. IEEE Transaction on Biomedical Engineering, 2016, 64(9):2110-2121.
[33] EAPEN M, KORAH R, GEETHA G. Computerized liver segmentation from CT images using probabilistic level set approach[J]. Arabian Journal for Science and Engineering, 2016, 41(3):921-934.
[34] ZAREEI A, KARIMI A. Liver segmentation with new supervised method to create initial curve for active contour[J]. Computers in Biology and Medicine, 2016, 75:139-150.
[35] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.
[36] SUZUKI K, HUYNH H T, LIU Y, et al. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring[C]//201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka:IEEE, 2013:2984-2987.
[37] SUZUKI K, KOHLBRENNER R, EPSTEIN M L, et al. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level set algorithms[J]. Medical Physics, 2010, 37(5):2159-2166.
[38] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1):12-49.
[39] LEE J, KIM N, LEE H, et al. Efficient liver segmentation exploiting level-set speed images with 2.5 D shape propagation[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:189-196.
[40] ZHANG K, ZHANG L, SONG H, et al. Active contours with selective local or global segmentation:a new formulation and level set method[J]. Image and Vision Computing, 2010, 28(4):668-676.
[41] LI C, XU C, GUI C, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12):3243-3254.
[42] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.
[43] GINNEKEN B V, HEIMANN T, STYNER M. 3D Segmentation in the clinic:a grand challenge[C]//Proceedings of 3D Segmentation in the Clinic:a Grand Challenge. Brisbane:Springer, 2007:7-15.
[44] ERDT M, KIRSCHNER M. Fast automatic liver segmentation combining learned shape priors with observed shape deviation[C]//2010 IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS). Perth:IEEE, 2010:249-254.
[45] 朱新勇, 方驰华, 鲍苏苏, 等. 基于64排螺旋CT扫描数据的肝脏图像分割和三维重建[J]. 南方医科大学学报, 2008, 28(3):345-347 ZHU Xin-yong, FANG Chi-hua, BAO Su-su, et al. Image segmentation and three-dimensional reconstruction of the liver based on 64-slice spiral CT scanning data[J]. Journal of Southern Medical University, 2008, 28(3):345-347
[46] HOOGI A, BEAULIEU C F, CUNHA G M, et al. Adaptive local window for level set segmentation of CT and MRI liver lesions[J]. Medical Image Analysis, 2017, 37:46-55.
[47] BALLA-ARABÉ S, GAO X, WANG B. GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram[J]. IEEE Transactions on Image Processing, 2013, 22(7):2688-2698.
[48] WANG C L, FRIMMEL H, SMEDBY Ö. Fast level set based image segmentation using coherent propagation[J]. Medical Physics, 2014, 41(7):1-11.
[49] CHENG Y, HU X, WANG J, et al. Accurate vessel segmentation with constrained B-snake[J]. IEEE Transactions on Image Processing, 2015, 24(8):2440-2445.
[50] SKALSKI A, HERYAN K, JAKUBOWSKI J, et al. Kidney segmentation in CT data using hybrid Level-Set Method with ellipsoidal shape constraints[J]. Metrology and Measurement Systems, 2017, 24(1):101-112. |