机械工程 |
|
|
|
|
缩尺车轮-环轨滚动接触与磨耗特性仿真分析 |
罗易飞( ),胡彬,赵鑫*( ),温泽峰 |
西南交通大学 牵引动力国家重点实验室,四川 成都 610031 |
|
Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail |
Yifei LUO( ),Bin HU,Xin ZHAO*( ),Zefeng WEN |
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China |
引用本文:
罗易飞,胡彬,赵鑫,温泽峰. 缩尺车轮-环轨滚动接触与磨耗特性仿真分析[J]. 浙江大学学报(工学版), 2024, 58(6): 1275-1284.
Yifei LUO,Bin HU,Xin ZHAO,Zefeng WEN. Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1275-1284.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.017
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1275
|
1 |
金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004.
|
2 |
张鹏, 赵鑫, 凌亮, 等 轮轨高频动力作用模拟中接触模型的影响分析[J]. 机械工程学报, 2020, 56 (12): 124- 132 ZHANG Peng, ZHAO Xin, LING Liang, et al Influence of contact modeling on numerical analyses of high frequency wheel-rail interactions[J]. Journal of Mechanical Engineering, 2020, 56 (12): 124- 132
doi: 10.3901/JME.2020.12.124
|
3 |
于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 北京: 中国铁道科学研究院, 2019. YU Miao. Transient simulation for high-speed track/vehicle system and study on rail corrugation [D]. Beijing: China Academy of Railway Sciences, 2019.
|
4 |
CUI X, CHENG Z, YANG Z, et al Study on the phenomenon of rail corrugation on high-speed rail based on the friction-induced vibration and feedback vibration[J]. Vehicle System Dynamics, 2020, 60 (2): 413- 432
|
5 |
SUDA Y, KOMINE H, IWASA T, et al Experimental study on mechanism of rail corrugation using corrugation simulator[J]. Wear, 2002, 253 (1/2): 162- 171
|
6 |
ZENG D, XU T, LIU W, et al Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446/447 (C): 1- 9
|
7 |
赵相吉, 马蕾, 郭俊, 等 干-水态下圆形硌伤对钢轨材料滚动接触疲劳特性影响[J]. 摩擦学学报, 2017, 37 (4): 544- 550 ZHAO Xiangji, MA Lei, GUO Jun, et al The effect of round defects on rolling contact fatigue characteristics of rail materials under dry-wet conditions[J]. Journal of Tribology, 2017, 37 (4): 544- 550
|
8 |
ZANI N, PETROGALLI C Predictive maps for the rolling contact fatigue and wear interaction in railway wheel steels[J]. Wear, 2022, 510/511: 204513
doi: 10.1016/j.wear.2022.204513
|
9 |
WANG Y, XIANG P, DING H, et al Effects of molybdenum addition on rolling contact fatigue of locomotive wheels under rolling-sliding condition[J]. Materials, 2020, 13 (19): 4282
doi: 10.3390/ma13194282
|
10 |
ZHOU L, WANG W, HU Y, et al Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment[J]. Wear, 2020, 456/457: 203365
doi: 10.1016/j.wear.2020.203365
|
11 |
周宇, 王钲, 卢哲超, 等 钢轨滚动接触疲劳裂纹萌生和磨耗共存预测方法验证[J]. 同济大学学报:自然科学版, 2021, 49 (3): 411- 420 ZHOU Yu, WANG Zheng, LU Zhechao, et al Verification of prediction method for coexistence of rolling contact fatigue crack initiation and wear growth in rail[J]. Journal of Tongji University: Natural Science, 2021, 49 (3): 411- 420
|
12 |
汪登荣, 倪文波, 王雪梅, 等 新型轮轨关系试验台研究[J]. 铁道机车车辆, 2012, 32 (2): 53- 57 WANG Dengrong, NI Wenbo, WANG Xuemei, et al Research on a new wheel-rail test rig[J]. Railway Locomotive and Car, 2012, 32 (2): 53- 57
|
13 |
NAEIMI M, LI Z, PETROV R, et al Development of a new downscale setup for wheel-rail contact experiments under impact loading conditions[J]. Experimental Techniques, 2017, 42 (1): 1- 17
|
14 |
ZHU J, THOMPSON J, JONES C On the effect of unsupported sleepers on the dynamic behaviour of a railway track[J]. Vehicle System Dynamics, 2011, 49 (9): 1389- 1408
doi: 10.1080/00423114.2010.524303
|
15 |
YANG Z, ZHANG P, MORAAL J, et al An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack[J]. Railway Engineering Science, 2022, 30 (3): 360- 382
doi: 10.1007/s40534-022-00285-y
|
16 |
NAEIMI M, LI Z, DOLLEVOET R Scaling strategy of a new experimental rig for wheel-rail contact[J]. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2014, 8 (12): 1787- 1794
|
17 |
NAEIMI M, LI Z, PETROV R, et al Substantial fatigue similarity of a new small-scale test rig to actual wheel-rail system[J]. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2014, 8 (12): 1830- 1838
|
18 |
温泽峰, 马启文, 金学松, 等. 轮轨滚动行为模拟试验台: CN107917817A [P]. 2018-04-17.
|
19 |
赵鑫, 温泽峰, 王衡禹, 等 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49 (18): 1- 7 ZHAO Xin, WEN Zefeng, WANG Hengyu, et al 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49 (18): 1- 7
doi: 10.3901/JME.2013.18.001
|
20 |
王晗, 刘超, 赵鑫, 等 单轮对高速滚动试验台的动态有限元模拟研究[J]. 电力机车与城轨车辆, 2015, 38 (3): 16- 19 WANG Han, LIU Chao, ZHAO Xin, et al Simulation research of dynamic finite element based on single wheel set high speed rolling test rig[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38 (3): 16- 19
|
21 |
ARIAS-CUEVAS O, LI Z, LEWIS R Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268 (3): 543- 551
|
22 |
刘启跃 钢轨的安定状态研究[J]. 西南交通大学学报, 1995, 30 (4): 466- 471 LIU Qiyue Research on stable state of rail[J]. Journal of Southwest Jiaotong University, 1995, 30 (4): 466- 471
|
23 |
KALKER J J A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11 (1): 1- 13
doi: 10.1080/00423118208968684
|
24 |
JENDEL T Prediction of wheel profile wear–comparisons with field measurements[J]. Wear, 2002, 253 (1): 89- 99
|
25 |
ARIZON J D, VERLINDEN O, DEHOMBREAUX P Prediction of wheel wear in urban railway transport: comparison of existing models[J]. Vehicle System Dynamics, 2007, 45 (9): 849- 866
doi: 10.1080/00423110601149335
|
26 |
POMBO J, AMBROSIO J, PEREIRA M, et al Development of a wear prediction tool for steel railway wheels using three alternative wear functions[J]. Wear, 2011, 271 (1/2): 238- 245
|
27 |
LEWIS R, DWYER-JOYCE R S Wear mechanisms and transitions in railway wheel steels[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218 (6): 467- 478
|
28 |
VUONG T T, MEEHAN P A Wear transitions in a wear coefficient model[J]. Wear, 2009, 266 (9): 898- 906
|
29 |
ZHAO X, ZHANG P, WEN Z On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear[J]. Wear, 2019, 430/431: 317- 326
doi: 10.1016/j.wear.2019.05.017
|
30 |
BOSSO N, SPIRYAGIN M, GUGLIOTTA A, et al. Mechatronic modeling of real-time wheel-rail contact [M]. Berlin: Springer, 2013.
|
31 |
康熙, 陈光雄, 吕金洲, 等 缩尺轮轨模型中钢轨波磨的相似性[J]. 西南交通大学学报, 2020, 55 (6): 1320- 1327 KANG Xi, CHEN Guangxiong, LV Jinzhou, et al Similarity study of small-scale wheelset-track model for investigation of rail corrugation[J]. Journal of Southwest Jiaotong University, 2020, 55 (6): 1320- 1327
|
32 |
罗易飞, 赵鑫, 周志军, 等 缩尺车轮-环轨试验台轮轨静态接触相似性研究[J]. 中南大学学报:自然科学版, 2022, 53 (10): 3901- 3911 LUO Yifei, ZHAO Xin, ZHOU Zhijun, et al Static contact similarity analysis of a scaled test rig wheel on rail track ring[J]. Journal of Central South University: Science and Technology, 2022, 53 (10): 3901- 3911
|
33 |
寇峻瑜. 基于显式有限元法的高速车轮多边形动态响应分析[D]. 成都: 西南交通大学, 2018. KOU Junyu. Analysis on dynamic responses of polygonized wheel of high-speed train using explicit FE method [D]. Chengdu: Southwest Jiaotong University, 2018.
|
34 |
谢毅, 寇峻瑜, 姜梅, 等 中国铁路发展概况与技术展望[J]. 高速铁路技术, 2020, 11 (1): 11- 16 XIE Yi, KOU Junyun, JIANG Mei, et al Development and technical prospect of China Railway[J]. High Speed Railway Technology, 2020, 11 (1): 11- 16
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|