Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1766-1774    DOI: 10.3785/j.issn.1008-973X.2023.09.008
交通工程     
基于粒子概率神经网络算法的钢轨波磨识别
汤雪扬1(),蔡小培1,*(),王伟华2,常文浩1,王启好1
1. 北京交通大学 土木建筑工程学院,北京 100044
2. 中国铁路设计集团有限公司,天津 300308
Rail corrugation recognition based on particle probabilistic neural network algorithm
Xue-yang TANG1(),Xiao-pei CAI1,*(),Wei-hua WANG2,Wen-hao CHANG1,Qi-hao WANG1
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2. China Railway Design Corporation, Tianjin 300308, China
 全文: PDF(1650 KB)   HTML
摘要:

针对地铁钢轨波磨问题,采用粒子群优化算法对概率神经网络进行优化,提出粒子概率神经网络(PPNN)算法. 使用PPNN算法在一定数值范围内对概率神经网络的平滑因子进行随机初始化,为了保证算法的全局搜索能力和计算效率,选用凹函数递减惯性权值实现平滑因子的更新迭代,得出分类准确率最高的平滑因子最优解. 为了说明PPNN算法的有效性,对钢轨粗糙度以及车内噪声进行现场测试,提取与钢轨波磨相关的车内噪声特征,分析该算法的种群规模和进化次数对波磨识别准确率的影响,对比不同智能分类算法的识别效果. 结果表明:与地铁钢轨波磨相关的车内噪声特征为 315、400、500、630、800、1000 Hz 中心频率处的A计权声压级;相比于决策树、高斯朴素贝叶斯、支持向量机、K近邻等主流智能分类算法,PPNN算法具有显著的优势,其波磨识别准确率达到98.582%.

关键词: 地铁钢轨波浪形磨耗车内噪声概率神经网络粒子群优化算法    
Abstract:

The particle swarm optimisation algorithm was used to optimise probabilistic neural network for the metro rail corrugation, and a particle probabilistic neural network (PPNN) algorithm was proposed. The proposed algorithm randomly initialized the smoothing factor of the probabilistic neural network within a certain range of values. To ensure the global search capability and the computational efficiency of the proposed algorithm, the concave function decreasing inertia weights were chosen to achieve the update iteration of the smoothing factor, resulting in the optimal solution of the smoothing factor with the highest classification accuracy. To illustrate the effectiveness of the proposed algorithm, field tests were conducted on the roughness of the rails and the interior noise, the features of interior noise associated with rail corrugation were extracted, the effect of the population size and the number of evolutions of the algorithm on the accuracy of rail corrugation recognition was analysed, and the recognition results of different intelligent classification algorithms were compared. Results showed that the interior noise associated with rail corrugation was characterised by A-weighted sound pressure levels at 315, 400, 500, 630, 800 and 1000 Hz centre frequencies. The advantages of the proposed algorithm over mainstream intelligent classification algorithms such as decision tree, Gaussian naive Bayes, support vector machine and K-nearest neighbor are significant, with an accuracy of 98.582% for rail corrugation recognition.

Key words: metro    rail corrugation    interior noise    probabilistic neural network    particle swarm optimization
收稿日期: 2022-11-13 出版日期: 2023-10-16
CLC:  U 213.4  
基金资助: 中央高校基本科研业务费专项资金资助项目(2018JBZ003);国家自然科学基金资助项目(52178405)
通讯作者: 蔡小培     E-mail: 20115062@bjtu.edu.cn;xpcai@bjtu.edu.cn
作者简介: 汤雪扬(1998—),男,博士生,从事轮轨伤损诊断研究. orcid.org/0000-0003-2525-0316. E-mail: 20115062@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汤雪扬
蔡小培
王伟华
常文浩
王启好

引用本文:

汤雪扬,蔡小培,王伟华,常文浩,王启好. 基于粒子概率神经网络算法的钢轨波磨识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1766-1774.

Xue-yang TANG,Xiao-pei CAI,Wei-hua WANG,Wen-hao CHANG,Qi-hao WANG. Rail corrugation recognition based on particle probabilistic neural network algorithm. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1766-1774.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.008        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1766

图 1  概率神经网络层次结构
图 2  不同进化次数下的速度更新权值变化曲线
图 3  粒子概率神经网络算法的流程
图 4  钢轨波磨测试
图 5  车内噪声测试
图 6  不同波长对应的钢轨表面粗糙度级
图 7  不同波磨激励频率对应的声压级
图 8  不同种群规模和最大进化次数下的钢轨波磨识别准确率
算法 $\sigma $ P/%
PNN 0.000 1 50.355
0.001 50.355
0.01 87.943
0.1 95.745
1 94.326
10 73.759
100 49.645
PPNN 0.144 5 98.582
表 1  概率神经网络和粒子概率神经网络的波磨识别准确率对比
算法 P/% 算法 P/%
决策树 94.300 K近邻 92.100
高斯朴素贝叶斯 92.900 PPNN 98.582
支持向量机 95.000
表 2  不同智能分类算法的钢轨波磨识别准确率对比
1 李响, 任尊松, 王子 基于梯形轨枕轨道振动特性的钢轨波磨研究[J]. 铁道学报, 2020, 42 (10): 38- 44
LI Xiang, REN Zun-song, WANG Zi Study on rail corrugation of ladder-type sleeper track based on vibration characteristics[J]. Journal of the China Railway Society, 2020, 42 (10): 38- 44
2 彭华, 汤雪扬, 蔡小培, 等 基于轨道振动特征的地铁钢轨波磨成因研究[J]. 铁道工程学报, 2021, 38 (11): 41- 46+66
PENG Hua, TANG Xue-yang, CAI Xiao-pei, et al Research on causes of metro rail corrugation based on track vibration characteristics[J]. Journal of Railway Engineering Society, 2021, 38 (11): 41- 46+66
3 PENG H, YAO Y F, CAI X P, et al Field measurement analysis and control measures evaluation of metro vehicle noise caused by rail corrugation[J]. Applied Sciences, 2021, 11 (23): 11190
doi: 10.3390/app112311190
4 谢清林. 基于数据与模型双重驱动的地铁钢轨波浪形磨耗识别方法初探[D]. 成都: 西南交通大学, 2021.
XIE Qing-lin. A preliminary study on rail corrugation detection method of metro lines based on data–model dual drive [D]. Chengdu: Southwest Jiaotong University, 2021.
5 王少锋, 许玉德, 周宇, 等 城市轨道交通曲线钢轨波磨检测与评价方法研究[J]. 城市轨道交通研究, 2011, (10): 56- 60
WANG Shao-feng, XU Yu-de, ZHOU Yu, et al Detection and evaluation of curve corrugation of urban mass transit[J]. Urban Mass Transit, 2011, (10): 56- 60
6 GRASSIE S L Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258 (7/8): 1224- 1234
doi: 10.1016/j.wear.2004.03.066
7 罗林, 张格明, 吴旺青, 等. 轮轨系统轨道平顺状态的控制[M]. 北京: 中国铁道出版社, 2006: 115-135.
8 陈亮. 基于弦测法的钢轨波磨动态检测关键技术研究[D]. 长沙: 湖南大学, 2019.
CHEN Liang. Research on key issue of rail corrugation dynamic measurement based on chord measurement method [D]. Changsha: Hunan University, 2019.
9 魏珲, 刘宏立, 马子骥, 等 基于组合弦测的钢轨波磨广域测量方法[J]. 西北大学学报: 自然科学版, 2018, 48 (2): 199- 208
WEI Hun, LIU Hong-li, MA Zi-ji, et al A wide-area measurement method of rail corrugation based on the combination-chord system[J]. Journal of Northwest University: Natural Science Edition, 2018, 48 (2): 199- 208
10 GRASSIE S L Measurement of railhead longitudinal profiles: a comparison of different techniques[J]. Wear, 1996, 191 (1/2): 245- 251
11 徐金辉, 王平, 汪力, 等 轨道高低不平顺敏感波长的分布特征及其影响因素的研究[J]. 铁道学报, 2015, 37 (7): 72- 78
XU Jin-hui, WANG Ping, WANG Li, et al Research on the distribution characteristics and influence factors of sensitive wavelength of track vertical profile irregularity[J]. Journal of the China Railway Society, 2015, 37 (7): 72- 78
12 周富强, 张广军, 朱奎义, 等. 钢轨磨耗激光视觉动态测量装置及测量方法: 200510123725. 0[P]. 2006-05-24.
13 王文健, 刘启跃, 王衡禹, 等. 钢轨波浪形磨损激光测量设备: 201220116237. 2[P]. 2012-11-07.
14 李清勇, 章华燕, 任盛伟, 等 基于钢轨图像频域特征的钢轨波磨检测方法[J]. 中国铁道科学, 2016, 37 (1): 24- 30
LI Qing-yong, ZHANG Hua-yan, REN Sheng-wei, et al detection method for rail corrugation based on rail image feature in frequency domain[J]. China Railway Science, 2016, 37 (1): 24- 30
15 马子骥, 董艳茹, 刘宏立, 等 基于多线结构光视觉的钢轨波磨动态测量方法[J]. 仪器仪表学报, 2018, 39 (6): 189- 197
MA Zi-ji, DONG Yan-ru, LIU Hong-li, et al Rail corrugation dynamic measurement method based on multi-line structured-light vision[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 189- 197
16 HOPKINS B M, TAHERI S. Broken rail prediction and detection using wavelets and artificial neural networks [C]// Proceedings of the ASME/ASCE/IEEE 2011 Joint Rail Conference. Pueblo: [s.n.], 2011: 77-84.
17 HOPKINS B M, TAHERI S. Track health monitoring using wavelets [C]// Proceedings of the ASME 2010 Rail Transportation Division Fall Technical Conference. Roanoke: [s.n.], 2010: 9-15.
18 GOMES R, BATISTA A, ORTIGUEIRA M D, et al A tool for the detection and quantification of rail corrugation[J]. Theoretical and Experimental Chemistry, 2010, 46 (3): 153- 157
doi: 10.1007/s11237-010-9132-3
19 WEI X K, LIU F, JIA L M Urban rail track condition monitoring on in-service vehicle acceleration measurements[J]. Measurement, 2016, 80: 217- 228
doi: 10.1016/j.measurement.2015.11.033
20 KOJIMA T, TSUNASHIMA H, MATSUMOTO A. Fault detection of railway track by multi-resolution analysis [M]// ALLAN J, RUMSEY A F, SCIUTTO G, et al. Computers in Railways X. [S.l.]: WIT Press, 2006, 88: 955-964.
21 谢清林, 陶功权, 刘孟奇, 等 数学形态学滤波在钢轨波磨波长识别中的应用[J]. 中南大学学报: 自然科学版, 2021, 52 (5): 1724- 1732
XIE Qing-lin, TAO gong-quan, LIU meng-qi, et al Application of mathematical morphology filter in recognition of rail corrugation wavelength[J]. Journal of Central South University: Science and Technology, 2021, 52 (5): 1724- 1732
22 周成, 高建敏 基于三维轮轨瞬态动力学模型的钢轨波磨不平顺动力影响与识别[J]. 铁道科学与工程学报, 2020, 17 (4): 841- 848
ZHOU cheng, GAO Jian-min Dynamic effect and identification of rail corrugation irregularity based on the three-dimensional wheel-rail transient dynamic model[J]. Journal of Railway Science and Engineering, 2020, 17 (4): 841- 848
23 田中博文, 蔡千华 钢轨波磨的车上监视方法[J]. 国外铁道车辆, 2017, 54 (1): 31- 36
TANAKA Hirofumi, CAI Qian-hua The on-vehicle supervision method for rail corrugation[J]. Foreign Rolling Stock, 2017, 54 (1): 31- 36
24 郭建强, 朱雷威, 刘晓龙, 等 地铁司机室噪声与钢轨波磨关系的试验与仿真研究[J]. 机械工程学报, 2019, 55 (16): 141- 147
GUO Jian-qiang, ZHU Lei-wei, LIU Xiao-long, et al Experimental and simulation study on the relationship between interior noise of metro cab and rail corrugation[J]. Journal of Mechanical Engineering, 2019, 55 (16): 141- 147
doi: 10.3901/JME.2019.16.141
25 冯陈程, 刘晓龙, 李伟, 等 短波长钢轨波磨对地铁车辆车内噪声的影响[J]. 噪声与振动控制, 2018, 38 (6): 113- 117
FENG Chen-cheng, LIU Xiao-long, Li Wei, et al Influence of short pitch rail corrugation on interior noise of metro vehicles[J]. Noise and Vibration Control, 2018, 38 (6): 113- 117
26 江航, 尚春阳, 高瑞鹏 基于EMD和神经网络的轮轨故障噪声诊断识别方法研究[J]. 振动与冲击, 2014, 33 (17): 34- 38
JIANG Hang, SHANG Chun-yang, GAO Rui-peng Wheel /rail fault noise diagnosis method based on EMD and neural network[J]. Journal of Vibration and Shock, 2014, 33 (17): 34- 38
27 周志青, 胡茑庆, 黄玉, 等. 基于支持向量机的轨道波磨检测方法研究[C]// 第十三届全国振动理论及应用学术会议论文集. 西安: [s.n.], 2019: 193−197.
ZHOU Zhi-qing, HU Niao-qing, HUANG Yu, et al. Research on rail corrugation detection method based on support vector machine [C]// Proceedings of the 13th National Conference on Vibration Theory and Applications. Xi'an: [s.n.], 2019: 193-197.
28 赵立强. 基于列车振动信息的钢轨波磨状态检测与识别研究[D]. 北京: 北京交通大学, 2021.
ZHAO Li-qiang. Research on detection and recognition of rail corrugation based on train vibration information [D]. Beijing: Beijing Jiaotong University, 2021.
29 张珍珍. 基于时频分析与数据挖掘的钢轨波磨检测[D]. 北京: 华北电力大学, 2021.
ZHANG Zhen-zhen. Detection of rail corrugation based on time-frequency analysis and data mining [D]. Beijing: North China Electric Power University, 2021.
30 肖炳环, 刘金朝, 牛留斌, 等 基于 WPD-ASTFT 和 SVM 重载铁路钢轨波磨诊断方法[J]. 铁道车辆, 2021, 59 (6): 31- 35+48
XIAO Bing-huan, LIU Jin-zhao, NIU Liu-bin, et al Diagnosis method of rail corrugation for heavy haul railway based on WPD-ASTFT and SVM[J]. Railway Vehicles, 2021, 59 (6): 31- 35+48
31 谢清林, 陶功权, 温泽峰 基于一维卷积神经网络的地铁 钢轨波磨识别方法[J]. 中南大学学报: 自然科学版, 2021, 52 (4): 1371- 1379
XIE Qing-lin, TAO Gong-quan, WEN Ze-feng Detection method of metro rail corrugation based on 1-dimensional convolutional neural network[J]. Journal of Central South University: Science and Technology, 2021, 52 (4): 1371- 1379
32 谢乐, 衡熙丹, 刘洋, 等 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2266- 2272
XIE Le, HENG Xi-dan, LIU Yang, et al Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2266- 2272
33 陈之毅, 黄鹏飞 基于概率神经网络的地铁车站易损性分析[J]. 同济大学学报: 自然科学版, 2021, 49 (6): 791- 798+756
CHEN Zhi-yi, HUANG Peng-fei Fragility analysis of a subway station based on probability artificial neural network[J]. Journal of Tongji University: Natural Science, 2021, 49 (6): 791- 798+756
34 冯建鑫, 王雅雷, 王强, 等 基于改进粒子群算法的快速反射镜自抗扰控制[J]. 系统工程与电子技术, 2021, 43 (12): 3675- 3682
FENG Jin-xin, WANG Ya-lei, WANG Qiang, et al Fast reflector self-anti-disturbance control based on improved particle swarm algorithm[J]. Systems Engineering and Electronics Technology, 2021, 43 (12): 3675- 3682
35 陈昆弘, 刘小峰 基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取[J]. 振动与冲击, 2017, 36 (22): 80- 85+157
CHEN Kun-hong, LIU Xiao-feng Incipient fault diagnosis of rolling element bearing based on adaptive maximum correlated kurtosis deconvolution[J]. Journal of Vibration and Shock, 2017, 36 (22): 80- 85+157
36 陈秋莲, 郑以君, 蒋环宇, 等 基于神经网络改进粒子群算法的动态路径规划[J]. 华中科技大学学报: 自然科学版, 2021, 49 (2): 51- 55
CHEN Qiu-lian, ZHENG Yi-jun, JIANG Huan-yu, et al Improved particle swarm optimization algorithm based on neural network for dynamic path planning[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49 (2): 51- 55
37 全国声学标准化技术委员会. 声学 轨道车辆内部噪声测量: GB/T 3449—2011 [S]. 北京: 中国标准出版社, 2011.
38 European Committee for Standardization. Acoustics-railway applications-measurement of noise emitted by railbound vehicles: ISO3095: 2013 [S]. London: British Standards Institution, 2013.
39 刘泽鹏. 基于经验模态分解和优化概率神经网络的变压器励磁涌流识别研究[D]. 北京: 华北电力大学, 2021.
LIU Ze-peng. Research on transformer magnetizing inrush current identification based on empirical mode decomposition and optimal probability [D]. Beijing: North China Electric Power University, 2021.
40 尉雅晨. 改进粒子群算法研究及其在柔性车间调度问题中的应用[D]. 兰州: 兰州理工大学, 2020.
WEI Ya-chen. Research on improved particle swarm optimization and its application in flexible job shop scheduling [D]. Lanzhou: Lanzhou University of Technology, 2020.
41 严阳. 粒子群算法的改进及其在非线性问题中的应用[D]. 广州: 华南理工大学, 2010.
YAN Yang. The improved of particle swarm optimization and its application in solving nonlinear problem [D]. Guangzhou: South China University of Technology, 2010.
[1] 曹志刚,王思崎,许逸飞,白晓东,袁宗浩,马夏飞. 地铁车辆段上盖建筑道砟垫减振机理与效果[J]. 浙江大学学报(工学版), 2023, 57(1): 71-80.
[2] 张斌,关庆华,李伟,周亚波,温泽峰. 轨道不平顺与轮轨匹配对地铁车辆晃动的影响[J]. 浙江大学学报(工学版), 2022, 56(9): 1772-1779.
[3] 王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
[4] 冉茂霞,黄沁元,刘鑫,宋弘,吴浩. 基于优化变分模态分解的磁瓦内部缺陷检测[J]. 浙江大学学报(工学版), 2020, 54(11): 2158-2168.
[5] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[6] 杨新宇,胡业发. 不确定环境下复杂产品维护、维修和大修服务资源调度优化[J]. 浙江大学学报(工学版), 2019, 53(5): 852-861.
[7] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[8] 汪成兵, 邵普. 地铁车站穿越地面建筑物施工方法[J]. 浙江大学学报(工学版), 2019, 53(1): 69-77.
[9] 张庆科, 孟祥旭, 张化祥, 杨波, 刘卫国. 基于随机维度划分与学习的粒子群优化算法[J]. 浙江大学学报(工学版), 2018, 52(2): 367-378.
[10] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[11] 陆源源, 王慧, 宋春跃. 考虑列车混行的运行调度一体化优化方法[J]. 浙江大学学报(工学版), 2018, 52(1): 106-116.
[12] 李卓峰, 林伟岸, 朱瑶宏, 边学成, 叶俊能, 高飞, 陈云敏. 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1475-1481.
[13] 陈仁朋, 叶跃鸿, 王诚杰, 孟凡衍. 大型地下通道开挖对下卧地铁隧道上浮影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1269-1277.
[14] 何娇, 杨志刚, 谭晓明, 张代娇, 吴晓龙. 160 km/h地铁列车头型气动阻力优化[J]. 浙江大学学报(工学版), 2017, 51(10): 2030-2038.
[15] 刘湘琪,蒙臻,倪敬,朱泽飞. 三自由度液压伺服机械手轨迹优化[J]. 浙江大学学报(工学版), 2015, 49(9): 1776-1782.