计算机与控制工程 |
|
|
|
|
多角色多策略多目标粒子群优化算法 |
王万良( ),金雅文,陈嘉诚,李国庆,胡明志,董建杭 |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 |
|
Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy |
Wan-liang WANG( ),Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
王万良,金雅文,陈嘉诚,李国庆,胡明志,董建杭. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541.
Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.012
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/531
|
1 |
公茂果, 焦李成, 杨咚咚, 等 进化多目标优化算法研究[J]. 软件学报, 2009, 20 (2): 271- 289 GONG Mao-guo, JIAO Li-cheng, YANG Dong-dong, et al Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20 (2): 271- 289
doi: 10.3724/SP.J.1001.2009.00271
|
2 |
王万良. 人工智能及其应用: 第4版[M]. 北京: 高等教育出版社, 2020: 240-252.
|
3 |
杨辉华, 谢谱模, 张晓凤, 等 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报:工学版, 2015, 49 (8): 1600- 1608 YANG Hui-hua, XIE Pu-mo, ZHANG Xiao-feng, et al Improved cuckoo search algorithm for multi-objective optimization problems[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1600- 1608
|
4 |
鲁建厦, 翟文倩, 李嘉丰, 等 基于改进混合蛙跳算法的多约束车辆路径优化[J]. 浙江大学学报:工学版, 2021, 55 (2): 259- 270 LU Jian-sha, ZHAI Wen-qian, LI Jia-feng, et al Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 259- 270
|
5 |
KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995, 4: 1942-1948.
|
6 |
REYES-SIERRA M, COELLO C C A Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2 (3): 287- 308
|
7 |
LIANG J J, QIN A K, SUGANTHAN P N, et al Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3): 281- 295
doi: 10.1109/TEVC.2005.857610
|
8 |
纪昌明, 马皓宇, 李宁宁, 等 基于树形结构无界存档的多目标粒子群算法[J]. 控制与决策, 2020, 35 (11): 2657- 2686 JI Chang-ming, MA Hao-yu, LI Ning-ning, et al Multi-objective particle swarm optimization algorithm based on tree-structured unbounded archive[J]. Control and Decision, 2020, 35 (11): 2657- 2686
|
9 |
HU W, YEN G Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (1): 1- 18
doi: 10.1109/TEVC.2013.2296151
|
10 |
韩红桂, 阿音嘎, 张璐, 等 自适应分解式多目标粒子群优化算法[J]. 电子学报, 2020, 48 (7): 1245- 1254 HAN Hong-gui, A Yin-ga, ZHANG Lu, et al Adaptive multiobjective particle swarm optimization based on decomposition archive[J]. Acta Electronica Sinica, 2020, 48 (7): 1245- 1254
doi: 10.3969/j.issn.0372-2112.2020.07.001
|
11 |
张庆科, 孟祥旭, 张化祥, 等 基于随机维度划分与学习的粒子群优化算法[J]. 浙江大学学报:工学版, 2018, 52 (2): 367- 378 ZHANG Qing-ke, MENG Xiang-xu, ZHANG Hua-xiang, et al Particle swarm optimization based on random vector partition and learning[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 367- 378
|
12 |
邱飞岳, 莫雷平, 江波, 等 基于大规模变量分解的多目标粒子群优化算法研究[J]. 计算机学报, 2016, 39 (12): 2598- 2613 QIU Fei-yue, MO Lei-ping, JIANG Bo, et al Multi-objective particle swarm optimization algorithm using large scale variable decomposition[J]. Chinese Journal of Computers, 2016, 39 (12): 2598- 2613
doi: 10.11897/SP.J.1016.2016.02598
|
13 |
刘彬, 刘泽仁, 赵志彪, 等 基于速度交流的多种群多目标粒子群算法研究[J]. 计量学报, 2020, 41 (8): 1002- 1011 LIU Bin, LIU Ze-ren, ZHAO Zhi-biao, et al Research on multi-population multi-objective particle swarm optimization algorithm based on velocity communication[J]. Acta Metrologica Sinica, 2020, 41 (8): 1002- 1011
doi: 10.3969/j.issn.1000-1158.2020.08.18
|
14 |
ZHANG X, TIAN Y, CHENG R, et al An efficient approach to nondominated sorting for evolutionary multiobjective[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (2): 201- 213
|
15 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// International Conference on Management of Data. Dallas: [s. n.], 2000: 93-104.
|
16 |
XIA X, XING Y, WEI B, et al A fitness-based multi-role particle swarm optimization[J]. Swarm and Evolutionary Computation, 2018, 349- 364
|
17 |
韩敏, 何泳 基于高斯混沌变异和精英学习的自适应多目标粒子群算法[J]. 控制与决策, 2016, 31 (8): 1372- 1378 HAN Min, HE Yong Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning[J]. Control and Decision, 2016, 31 (8): 1372- 1378
|
18 |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197
doi: 10.1109/4235.996017
|
19 |
LI H, ZHANG Q, DENG J Biased multiobjective optimization and decomposition algorithm[J]. IEEE Transactions on Cybernetics, 2017, 47 (1): 52- 66
doi: 10.1109/TCYB.2015.2507366
|
20 |
HUA Y, JIN Y, HAO K A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular pareto fronts[J]. IEEE Transactions on Cybernetics, 2019, 49 (7): 2758- 2770
doi: 10.1109/TCYB.2018.2834466
|
21 |
LIN Q, LI J, DU Z, et al A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247 (3): 732- 744
doi: 10.1016/j.ejor.2015.06.071
|
22 |
ZHANG X, ZHENG X, CHENG R, et al A competitive mechanism based multi-objective particle swarm optimizer with fast convergence[J]. Information Sciences, 2018, 427: 63- 76
doi: 10.1016/j.ins.2017.10.037
|
23 |
DEB K, JAIN H An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (4): 577- 601
doi: 10.1109/TEVC.2013.2281535
|
24 |
HE C, TIAN Y, JIN Y, et al A radial space division based evolutionary algorithm for many-objective optimization[J]. Applied Soft Computing, 2017, 61: 603- 621
doi: 10.1016/j.asoc.2017.08.024
|
25 |
LIN Q, LIU S, ZHU C, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems [J]. IEEE Transactions on Evolutionary Computation,2018, 22(1): 32-46.
|
26 |
CHENG R, JIN Y, OLHOFER M, et al A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20 (5): 773- 791
doi: 10.1109/TEVC.2016.2519378
|
27 |
ZHANG P, LI J, LI T, et al A new many-objective evolutionary algorithm based on determinantal point processes[J]. IEEE Transactions on Evolutionary Computation, 2020, 25 (2): 334- 345
|
28 |
LI M, YANG S, LIU X Shift-based density estimation for pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18 (3): 348- 365
doi: 10.1109/TEVC.2013.2262178
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|