Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1284-1293    DOI: 10.3785/j.issn.1008-973X.2018.07.008
自动化技术     
基于超平面投影的高维多目标进化算法
毕晓君, 王朝
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Many-objective evolutionary algorithm based on hyperplane projection
BI Xiao-jun, WANG Chao
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
 全文: PDF(1223 KB)   HTML
摘要:

针对高维多目标优化问题(MaOPs),为了更好地在收敛性和分布性之间保持平衡,提出基于超平面投影的高维多目标进化算法(HPEA).通过归一化技术构造单位超平面,将种群个体垂直投影到单位超平面上,消除收敛程度的影响;通过改进的Harmonic平均距离,评估单位超平面上投影点的拥挤密度;结合收敛信息构造λ-distance,更好地平衡解集收敛性与分布性.为了检验所提算法的性能,将之用于求解3~10个目标的9类标准测试函数,与目前国内外具有代表性的5种高维多目标进化算法对比可知,该算法相对于其他算法具有优势,能够在提高算法收敛性的同时,保证解集的分布性.

Abstract:

A many-objective evolutionary algorithm based on hyperplane projection (HPEA) was proposed in order to better balance between convergence and distribution in many-objective optimization problems (MaOPs). The normalization method was used to construct a unit hyperplane and the population was projected onto the unit hyperplane for removing the influence of the convergence degree of individuals. Then an improved Harmonic mean distance was used to calculate the crowding density of the projected points in the above unit hyperplane. The λ-distance was constructed to better balance between convergence and distribution of solutions by considering the convergence information. Nine standard benchmark problems with three to ten objectives were tested to demonstrate the effectiveness of the proposed algorithm. The algorithm was compared with five state-of-the-art many-objective evolutionary algorithms (MaOEAs). The experimental results show that the proposed algorithm has more advantage than other algorithms, which can ensure the uniform distribution and improve the convergence.

收稿日期: 2017-04-28 出版日期: 2018-06-26
CLC:  TP391  
基金资助:

国家自然科学基金资助项目(61175126).

作者简介: 毕晓君(1964-),女,教授,从事进化计算、多目标优化研究.orcid.org/0000-0002-5382-1000.E-mail:bixiaojun@hrbeu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.

BI Xiao-jun, WANG Chao. Many-objective evolutionary algorithm based on hyperplane projection. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1284-1293.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.008        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1284

[1] PURSHOUSE R C, FLEMING P J. On the evolutionary optimization of many conflicting objectives[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):770-784.
[2] 孔维健,丁进良,柴天佑.高维多目标进化算法研究综述[J].控制与决策,2010,25(3):321-326. KONG Wei-jian, DING Jin-liang, CHAI Tian-you. Survey on large-dimensional multi-objective evolutionary algorithms[J]. Control and Decision, 2010, 25(3):321-326.
[3] 巩敦卫,季新芳,孙晓燕.基于集合的高维多目标优化问题的进化算法[J].电子学报,2014,42(1):77-83. GONG Dun-wei, JI Xin-fang, SUN Xiao-yan. Solving many-objective optimization problems using set-based evolutionary algorithms[J]. Acta Electronica Sinica, 2014, 42(1):77-83.
[4] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
[5] ZITZLER E, LAUMANNS M, THIELE L. SPEA2:improving the strength Pareto evolutionary algorithm[R]. Swiss:Technical Report Gloriastrass,2001.
[6] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESA-Ⅱ:region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. San Francisco:Morgan Kaufmann, 2001:283-290.
[7] 陈小红,李霞,王娜.高维多目标优化中基于稀疏特征选择的目标降维方法[J].电子学报,2015, 43(7):1300-1307. CHEN Xiao-hong, LI Xia, WANG Na. Objective reduction with sparse feature selection for many objective optimization problem[J]. Acta Electronica Sinica, 2015, 43(7):1300-1307.
[8] 过晓芳,王宇平,代才.新的混合分解高维多目标进化算法[J].浙江大学学报:工学版,2016,50(7):1313-1321. GUO Xiao-fang, WANG Yu-ping, DAI Cai. New hybrid decomposition many-objective evolutionary algorithm[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(7):1313-1321.
[9] ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization:a short review[C]//IEEE World Congress on Computational Intelligence. Hongkong:IEEE, 2008:2419-2426.
[10] LI K, DEB K, ZHANG Q, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5):694-716.
[11] SATO H, AGUIRRE H E, TANAKA K. Controlling dominance area of solutions and its impact on the performance of MOEAs[M]//Evolutionary multi-criterion optimization. Berlin:Springer, 2007:690-702.
[12] YANG Sheng-xiang. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013,17(5):721-736.
[13] HE Zhe-nan, YEN G G, ZHANG Jun. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2):269-285.
[14] HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched Pareto genetic algorithm for multiobjective optimization[C]//IEEE World Congress on Computational Intelligence. Orlando:IEEE, 1994:82-87.
[15] 郑金华,申瑞珉,李密青,等.一种基于信息分离的高维多目标进化算法[J].软件学报,2015,26(5):1013-1036. ZHENG Jin-hua, SHEN Rui-min, LI Mi-qing, et al. Evolutionary algorithm based on information separation for many-objective optimization[J]. Journal of Software, 2015, 26(5):1013-1036.
[16] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I:solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601.
[17] LI Mi-qing, YANG Sheng-xiang, LIU Xiao-hui. Shift-based density estimation for Pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3):348-365.
[18] ZHANG Xing-yi, TIAN Ye, JIN Y C. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(6):761-776.
[19] 毕晓君,张永建,陈春雨.基于模糊支配的高维多目标进化算法MFEA[J].电子学报,2014,42(8):1653-1659. BI Xiao-Jun, ZHANG Yong-jian, CHEN Chun-yu. A many-objective evolutionary algorithm based on fuzzy dominance:MFEA[J]. Acta Electronica Sinica, 2014, 42(8):1653-1659.
[20] ZHANG Qing-fu, LI Hui. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[21] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]//Evolutionary multiobjective optimization. London:Springer, 2005:105-145.
[22] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers:an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):117-132.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.
[15] 于勇, 周阳, 曹鹏, 赵罡. 基于MBD模型的工序模型构建方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1025-1034.