Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1294-1301    DOI: 10.3785/j.issn.1008-973X.2018.07.009
自动化技术     
岩心三维CT图像超分辨率重建
张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海
四川大学 电子信息学院, 四川 成都 610065
Super-resolution reconstruction for three-dimensional core CT image
ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(8034 KB)   HTML
摘要:

为了提高岩心三维图像分辨率,将调整的锚点邻域回归算法(A+)扩展为三维图像超分辨率重建,提出三维高频修正A+算法.该算法利用已有的高分辨率(HR)岩心三维CT图像和高频修正信息训练高低分辨率字典、高频修正字典、映射矩阵和高频修正映射矩阵.重建时,对每个输入的三维低分辨率(LR)特征块搜索匹配的字典原子以及相应的映射矩阵和高频修正矩阵,通过LR特征向量分别与映射矩阵和高频映射矩阵相乘,直接将三维LR特征映射到HR空间.针对多组岩心三维CT图像进行实验,与其他三维超分辨率算法进行比较.实验结果表明,该算法具有较高的峰值信噪比和结构相似度.

Abstract:

A + (adjusted anchored neighborhood regression) algorithm was extended to three-dimensional (3D) image super-resolution reconstruction in order to improve the resolution of three-dimensional image of core. A 3D high frequency correction A + algorithm was proposed. The existing high resolution (HR) core 3D CT image and the high frequency correction information were used to train the high and low resolution dictionary, the high frequency correction dictionary, the mapping matrix and the high frequency correction mapping matrix. In reconstruction, the matched dictionary atom and mapping matrix were searched for each input of the 3D low-resolution (LR) feature block and mapped directly to the HR space via multiplying the mapping vectors by LR feature vectors, respectively. Several 3D core CT images were experimented. The algorithm was compared with other three-dimensional super-resolution algorithms. The experimental results show that the proposed algorithm can obtain higher peak signal to noise ratio and structural similarity.

收稿日期: 2017-05-09 出版日期: 2018-06-26
CLC:  TP391  
基金资助:

国家自然科学基金资助项目(61372174).

通讯作者: 滕奇志,女,教授,博导.orcid.org/0000-0002-5462-683X.     E-mail: qzteng@scu.edu.cn
作者简介: 张廷蓉(1993-),女,硕士生,从事数字图像处理的研究.orcid.org/0000-0003-2976-8497.E-mail:18200295875@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.

ZHANG Ting-rong, TENG Qi-zhi, LI Zheng-ji, QING Lin-bo, HE Xiao-hai. Super-resolution reconstruction for three-dimensional core CT image. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1294-1301.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.009        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1294

[1] PELED S, YESHURUN Y. Super resolution in MRI:application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine, 2001, 45(1):29-35.
[2] GREENSPAN H, OZ G, KIRYATI N, et al. MRI inter-slice reconstruction using super-resolution[J]. Magnetic Resonance Imaging, 2002, 20(5):437-446.
[3] KORNPROBST P, PEETERS R, NIKOLOVA M, et al. A super resolution framework for fMRI sequences and its impact on resulting activation maps[C]//International Conference of Medical Image Computing and Computer-Assisted Intervention. Montréal:Springer, 2003:117-125.
[4] MANJÓN J V, COUPÉ P, BUADES A, et al. Non-local MRI upsampling[J]. Medical Image Analysis, 2010, 14(6):784-792.
[5] IWAMOTO Y, HAN X H, SASATANI S, et al. Super-resolution of MR volumetric images using sparse representation and self-similarity[C]//International Conference on Pattern Recognition.Tsukuba,Japan:IAPR, 2012:3758-3761.
[6] TIMOFTE R, DE V, GOOL L V. Anchored neighborhood regression for fast example-based super-resolution[C]//IEEE International Conference on Computer Vision. Sydney:IEEE, 2013:1920-1927.
[7] TIMOFTE R, SMET V D, GOOL L V. A+:adjusted anchored neighborhood regression for fast super-resolution[J]. Lecture Notes in Computer Science, 2015, 9006:111-126.
[8] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces. Avignon:Springer, 2010:711-730.
[9] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J] IEEE Transactions on Image Processing, 2010, 19(11):2861-2873.
[10] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 于勇, 周阳, 曹鹏, 赵罡. 基于MBD模型的工序模型构建方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1025-1034.