Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 71-80    DOI: 10.3785/j.issn.1008-973X.2023.01.008
土木工程     
地铁车辆段上盖建筑道砟垫减振机理与效果
曹志刚1(),王思崎1,许逸飞1,白晓东1,袁宗浩2,马夏飞3
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江工业大学 岩土工程研究所,浙江 杭州 310023
3. 杭州市东胜置业有限公司,浙江 杭州 310020
Vibration mitigation mechanism and effect of ballast mats for over-track buildings on metro depot
Zhi-gang CAO1(),Si-qi WANG1,Yi-fei XU1,Xiao-dong BAI1,Zong-hao YUAN2,Xia-fei MA3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
3. Hangzhou Dongsheng Real Estate Limited Company, Hangzhou 310020, China
 全文: PDF(3481 KB)   HTML
摘要:

为了分析道砟垫对上盖建筑的减振效果,对杭州市某地铁车辆段咽喉区、试车线碎石道床(含道砟垫)轨道和上盖建筑振动响应进行现场测试. 考虑桩与土体的相互作用,建立列车-轨道-土体-桩-上盖建筑三维全耦合动力学模型,揭示了车辆段列车引起上盖建筑振动传播的规律以及道砟垫对上盖建筑减振的机理,分析不同车速下道砟垫刚度对减振效果的影响. 结果发现,上盖建筑底层振动主频为40~80 Hz,高频成分随着层高衰减明显;建筑顶层振动主频为20~40 Hz,低频成分随着层高有增大的趋势. 道砟垫对上盖建筑的减振效果随着频率的增大呈整体改善的趋势,40 Hz以上的频段,结构最大插入损失可达7~12 dB. 车速越高,道砟垫刚度越小,道砟垫对上盖建筑的减振效果越好. 综合考虑道砟垫压缩量和减振效果,建议道砟垫刚度取值为0.012~0.024 N/mm3.

关键词: 地铁车辆段道砟垫上盖建筑物减振效果    
Abstract:

The vibration responses of track structures in the throat area and test line (with ballast mats) and those of over-track buildings at Hangzhou metro depot were tested in order to analyze the vibration mitigation effect of ballast mats on over-track buildings. A three-dimensional fully-coupled dynamic model of train-track-soil-pile-building was established by considering the interaction between pile and soil. The model revealed the vibration propagation laws of over-track buildings caused by train in the metro deport and the mitigation mechanism of ballast mats on over-track buildings. The influence of stiffness of ballast mats on vibration mitigation effect under different train speeds was analyzed. Results showed that the main frequency range of ground floor vibration was 40-80 Hz, and the high frequency component obviously attenuated with story height. The main frequency range of the vibration of the top floor of the building was 20-40 Hz, and the low frequency component tended to increase with the height of the building. Ballast mats had a good vibration mitigation effect on the over-track building with the increase of frequency. The maximum insertion loss of structures reached 7-12 dB in the frequency band above 40 Hz. The higher speed of the train, the smaller stiffness of ballast mats, the better the vibration mitigation effect of the ballast mats on over-track buildings would be. Compression deformation and vibration mitigation effect were considered. It was recommended that the stiffness range of ballast mats was 0.012-0.024 N/mm3.

Key words: metro depot    ballast mat    over-track building    isolation effectiveness
收稿日期: 2022-01-28 出版日期: 2023-01-17
CLC:  TU 473  
基金资助: 国家自然科学基金资助项目(51778571, 51978611);浙江省杰出青年基金资助项目(LR21E080004)
作者简介: 曹志刚(1983—),男,教授,从事土动力学的研究. orcid.org/0000-0002-1295-9353. E-mail: caozhigang2011@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹志刚
王思崎
许逸飞
白晓东
袁宗浩
马夏飞

引用本文:

曹志刚,王思崎,许逸飞,白晓东,袁宗浩,马夏飞. 地铁车辆段上盖建筑道砟垫减振机理与效果[J]. 浙江大学学报(工学版), 2023, 57(1): 71-80.

Zhi-gang CAO,Si-qi WANG,Yi-fei XU,Xiao-dong BAI,Zong-hao YUAN,Xia-fei MA. Vibration mitigation mechanism and effect of ballast mats for over-track buildings on metro depot. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 71-80.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.008        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/71

工况 测点布置
咽喉区(有道砟垫) 钢轨A1 轨枕B1 柱C1
咽喉区(无道砟垫) 钢轨A2 轨枕B2 柱C2
试车线(有道砟垫) 钢轨A3 转换平台柱D1 转换平台柱D2
住宅建筑 1层F1/E1 3层F2/E2 5层F3/E3 7层F4/E4 10层F5/E5
表 1  测点布置
图 1  测试工况及测点布置
图 2  现场测试及测试设备
轨道结构类型 测点 v/(km·h?1) w/mm VLmax /dB
水平 竖直
有道砟垫
(咽喉区)
A1 5 0.859 84.35 89.61
A1 10 0.638 86.13 91.27
A1 15 0.470 87.85 94.39
B1 5 0.298 83.02 87.26
B1 10 0.187 84.36 88.15
B1 15 0.153 85.12 88.47
无道砟垫
(咽喉区)
A2 5 0.120 91.61 97.57
A2 10 0.103 92.01 98.53
A2 15 0.076 93.46 100.64
B2 5 0.047 82.59 87.22
B2 10 0.381 83.56 88.17
B2 15 0.024 84.20 88.39
有道砟垫
(试车线)
A3 20 0.413 81.88 87.45
A3 30 0.231 82.01 90.26
A3 40 0.180 82.07 91.39
表 2  钢轨和轨枕的振动响应
测点 A/(m·s?2) fA /Hz
Z Y X
C1 0.332 0.231 0.159 85~90
C2 0.647 0.270 0.224 40~60
表 3  结构柱C1和C2振动的对比
图 3  结构柱C1和C2的频谱图
测点 A/ (m·s?2) fA /Hz
Z Y X
D1 0.596 0.370 0.278 40~80
D2 0.091 0.076 0.077 40~80
F1 0.087 0.075 0.073 40~63
F2 0.082 0.070 0.065 0~20、31.5~50
F3 0.075 0.072 0.067 0~20、31.5~50
F4 0.072 0.064 0.068 0~10、20~40
F5 0.070 0.065 0.070 0~10、20~40
表 4  试车线上部结构振动的实测值
图 4  试车线上部结构的振动传播规律
图 5  列车-轨道空间耦合动力学模型
参数 数值
车体质量 48800 kg
单车尺寸(长×宽×高) 19.52 m×3.08 m×3.8 m
转向架轴距 2500 mm
车辆定距 15600 mm
车体转动惯量 1875000 kg?m2
转向架质量 7358 kg
转向架转动惯量 5070 kg?m2
轮对质量 1780 kg
一系悬挂刚度 5.1 kN/mm
一系悬挂阻尼系数 13 kN?s/m
二系悬挂刚度 0.828 kN/mm
二系悬挂阻尼系数 30 kN?s/m
轴重 ≤15 t
表 5  车辆的动力学参数
图 6  钢轨的静态不平顺谱
参数 数值
钢轨截面积 7.745×10?3 m2
钢轨单位质量 60.64 kg/m
钢轨截面惯性矩 3.217×10?5 m4
钢轨弹性垫阻尼系数 7.5×104 N?s/m
轨枕间距 0.6 m
轨枕质量 251 kg
道砟密度 1750 kg/m3
道砟阻尼系数 5.88×104 N?s/m
道砟剪切刚度 7.8×107 N/m
道砟弹性模量 0.8×108 Pa
道砟剪切阻尼系数 8.0×104 N?s/m
地基弹性模量 9.0×107 Pa/m
地基阻尼系数 3.115×104 N?s/m
道砟垫刚度 1.2×10?5~4.8×10?5 Pa
表 6  轨道结构的动力学参数
图 7  轨道-土体-桩-建筑物3D有限元模型
土层 Hi/m ρ/(kg·m?3) E/MPa μ $\xi $
人工填土 4 1.98 117 0.31 0.03
淤泥质土 2 1.53 78.3 0.30 0.03
细砂 14 1.86 220 0.32 0.03
中粗砂 20 1.96 280 0.23 0.03
含砂粉质 60 1.88 150.8 0.31 0.03
表 7  地层参数
模型结构 E/MPa μ ρ/(kg·m?3)
钢轨 210000 0.25 7850
轨枕 30000 0.20 2400
道砟 130 0.35 1800
底碴 300 0.35 2200
混凝土水硬层 315000 0.30 2500
表 8  结构模型的参数
图 8  结构柱D1振动的时频验证
图 9  结构柱D1和D2的加速度时程曲线
图 10  结构柱D1和D2的振动加速度级
图 11  结构柱F1~F5的插入损失
图 12  不同速度下上盖结构的振动传播规律
图 13  不同速度下的楼板E1~E5振动响应
图 14  不同刚度道砟垫下楼板E1~E5的最大加速度级
1 COLAÇO A, COSTA P A, AMADO-MENDES P, et al Prediction of vibrations and reradiated noise due to railway traffic: a comprehensive hybrid model based on a finite element method and of fundamental solutions approach[J]. Journal of Vibration and Acoustics, 2017, 139 (6): 061009
doi: 10.1115/1.4036929
2 YANG Y B, GE P, LI Q, et al 2.5D vibration of railway-side buildings mitigated by open or infilled trenches considering rail irregularity[J]. Soil Dynamics and Earthquake Engineering, 2018, 106 (3): 204- 214
3 CONNOLLY D P, COSTA P A, KOUROUSSIS G, et al Large scale international testing of railway ground vibrations across Europe[J]. Soil Dynamics and Earthquake Engineering, 2015, 71 (39): 1- 12
4 PANEIRO G, DURÃO F O, SILVA M C E, et al Prediction of ground vibration amplitudes due to urban railway traffic using quantitative and qualitative field data[J]. Transportation Research Part D: Transport and Environment, 2015, 40 (OCTa): 1- 13
5 High-speed ground transportation noise and vibration impact assessment [S]. Washington, DC: Federal Railroad Administration, 2012.
6 QUAGLIATA A, AHEARN M, BOEKER E, et al. Transit noise and vibration impact assessment manual, technical report [S]. Washington, DC: Federal Transit Administration, 2018: 121–165.
7 LURCOCK D E J, THOMPSON D J, BEWES O G, et al Groundborne railway noise and vibration in buildings: results of a structural and acoustic parametric study[J]. Notes on Numerical Fluid Mechanics and Multidisciplinary, 2018, 139: 193- 204
8 SADEGHI J, ESMAEILI M H, AKBARI M Reliability of FTA general vibration assessment model in prediction of subway induced ground borne vibrations[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 300- 311
doi: 10.1016/j.soildyn.2018.11.002
9 KUO K A, PAPADOPOULOS M, LOMBAERT G, et al The coupling loss of a building subject to railway induced vibrations: numerical modelling and experimental measurements[J]. Journal of Sound and Vibration, 2019, 442: 459- 481
doi: 10.1016/j.jsv.2018.10.048
10 AUERSCH L Simple and fast prediction of train-induced track forces, ground and building vibrations[J]. Railway Engineering Science, 2020, 28 (3): 232- 250
doi: 10.1007/s40534-020-00218-7
11 马蒙, 刘维宁, 刘卫丰 列车引起环境振动预测方法与不确定性研究进展[J]. 交通运输工程学报, 2020, 20 (3): 1- 16
MA Meng, LIU Wei-ning, LIU Wei-feng Research progresses of prediction method and uncertainty of train-induced environmental vibration[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (3): 1- 16
12 LÓPES P, COSTA P A, CALÇADA R, et al Influence of soil stiffness on vibrations inside buildings due to railway traffic: numerical study[J]. Computers and Geotechnics, 2014, 61 (3): 277- 291
doi: 10.1016/j.compgeo.2014.06.005
13 LÓPEZ-MENDOZA D, CONNOLLY D P, ROMERO A, et al A transfer function method to predict building vibration and its application to railway defects[J]. Construction and Building Materials, 2020, 232: 117217
doi: 10.1016/j.conbuildmat.2019.117217
14 DI G, XIE Z, GUO J Predict the influence of environmental vibration from high-speed railway on over-track buildings[J]. Sustainability, 2021, 13 (6): 3218
doi: 10.3390/su13063218
15 SANAYEI M, ANISH K P, MOORE J A, et al Measurement and prediction of train-induced vibrations in a full-scale building[J]. Engineering Structure, 2014, 77: 119- 128
doi: 10.1016/j.engstruct.2014.07.033
16 CAO Z, GUO T, ZHANG Z Vibration measurement in a metro depot with trains running in the top story[J]. Journal of Vibroengineering, 2017, 19 (1): 502- 519
doi: 10.21595/jve.2016.17304
17 TAO Z, WANG Y, SANAYEI M, et al Experimental study of train-induced vibration in over-track buildings in a metro depot[J]. Engineering Structures, 2019, 198: 109473
doi: 10.1016/j.engstruct.2019.109473
18 ZOU C, WANG Y, MOORE J A, et al Train-induced field vibration measurements of ground and over-track buildings[J]. Science of the Total Environment, 2017, 575: 1339- 1351
doi: 10.1016/j.scitotenv.2016.09.216
19 COSTA P A, CALÇADA R, CARDOSO A S Ballast mats for the reduction of railway traffic vibrations. numerical study[J]. Soil Dynamics and Earthquake Engineering, 2012, 42: 137- 150
doi: 10.1016/j.soildyn.2012.06.014
20 王一干, 刘鹏辉, 李腾, 等 车辆段轨道减振措施对上盖建筑减振降噪效果试验研究[J]. 振动与冲击, 2020, 39 (21): 284- 291
WANG Yi-gan, LIU Peng-hui, LI Teng, et al Tests for effect of track vibration reduction measures in a depot on vibration and noise reduction of a superstructure[J]. Journal of Vibration and Shock, 2020, 39 (21): 284- 291
doi: 10.13465/j.cnki.jvs.2020.21.038
21 CAO Z G, CAI Y Q, SUN H L, et al Dynamic responses of a poroelastic half-space from moving trains caused by vertical track irregularities[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (7): 761- 786
doi: 10.1002/nag.919
22 CAO Z G, CAI Y Q, JIN H Mitigation of ground vibration generated by high-speed trains on saturated poroelastic ground with under-sleeper pads[J]. Journal of Transportation Engineering, 2014, 140 (1): 12- 22
doi: 10.1061/(ASCE)TE.1943-5436.0000610
23 谢伟平, 王政印, 孙亮明 地铁车辆段新型隔振支座的减振效果研究[J]. 振动与冲击, 2018, 37 (10): 63- 70
XIE Wei-ping, WANG Zheng-yin, SUN Liang-ming Vibration reduction effect of a new isolation bearing for a metro depot[J]. Journal of Vibration and Shock, 2018, 37 (10): 63- 70
doi: 10.13465/j.cnki.jvs.2018.10.010
24 YANG J, ZHU S, ZHAI W, et al Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel[J]. Science of the Total Environment, 2019, 668: 485- 499
doi: 10.1016/j.scitotenv.2019.02.397
25 城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准: JGJ/T 170-2009 [S]. 北京: 中国建筑工业出版社, 2009.
26 CAI C B, HE Q L, ZHU S Y, et al , Dynamic interaction of suspension-type monorail vehicle and bridge: numerical simulation and experiment[J]. Mechanical Systems and Signal Processing, 2019, 118: 388- 407
doi: 10.1016/j.ymssp.2018.08.062
27 ZHAI W M, XIA H, CAI C B, et al High-speed train-track-bridge dynamic interactions part I: theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1 (1/2): 3- 24
doi: 10.1080/23248378.2013.791498
28 PAPADOPOULOS M, FRANÇOIS S, DEGRANDE G, et al The influence of uncertain local subsoil conditions on the response of buildings to ground vibration[J]. Journal of Sound Vibration, 2018, 418 (4): 200- 220
No related articles found!