交通工程 |
|
|
|
|
基于粒子概率神经网络算法的钢轨波磨识别 |
汤雪扬1( ),蔡小培1,*( ),王伟华2,常文浩1,王启好1 |
1. 北京交通大学 土木建筑工程学院,北京 100044 2. 中国铁路设计集团有限公司,天津 300308 |
|
Rail corrugation recognition based on particle probabilistic neural network algorithm |
Xue-yang TANG1( ),Xiao-pei CAI1,*( ),Wei-hua WANG2,Wen-hao CHANG1,Qi-hao WANG1 |
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China 2. China Railway Design Corporation, Tianjin 300308, China |
引用本文:
汤雪扬,蔡小培,王伟华,常文浩,王启好. 基于粒子概率神经网络算法的钢轨波磨识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1766-1774.
Xue-yang TANG,Xiao-pei CAI,Wei-hua WANG,Wen-hao CHANG,Qi-hao WANG. Rail corrugation recognition based on particle probabilistic neural network algorithm. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1766-1774.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.008
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1766
|
1 |
李响, 任尊松, 王子 基于梯形轨枕轨道振动特性的钢轨波磨研究[J]. 铁道学报, 2020, 42 (10): 38- 44 LI Xiang, REN Zun-song, WANG Zi Study on rail corrugation of ladder-type sleeper track based on vibration characteristics[J]. Journal of the China Railway Society, 2020, 42 (10): 38- 44
|
2 |
彭华, 汤雪扬, 蔡小培, 等 基于轨道振动特征的地铁钢轨波磨成因研究[J]. 铁道工程学报, 2021, 38 (11): 41- 46+66 PENG Hua, TANG Xue-yang, CAI Xiao-pei, et al Research on causes of metro rail corrugation based on track vibration characteristics[J]. Journal of Railway Engineering Society, 2021, 38 (11): 41- 46+66
|
3 |
PENG H, YAO Y F, CAI X P, et al Field measurement analysis and control measures evaluation of metro vehicle noise caused by rail corrugation[J]. Applied Sciences, 2021, 11 (23): 11190
doi: 10.3390/app112311190
|
4 |
谢清林. 基于数据与模型双重驱动的地铁钢轨波浪形磨耗识别方法初探[D]. 成都: 西南交通大学, 2021. XIE Qing-lin. A preliminary study on rail corrugation detection method of metro lines based on data–model dual drive [D]. Chengdu: Southwest Jiaotong University, 2021.
|
5 |
王少锋, 许玉德, 周宇, 等 城市轨道交通曲线钢轨波磨检测与评价方法研究[J]. 城市轨道交通研究, 2011, (10): 56- 60 WANG Shao-feng, XU Yu-de, ZHOU Yu, et al Detection and evaluation of curve corrugation of urban mass transit[J]. Urban Mass Transit, 2011, (10): 56- 60
|
6 |
GRASSIE S L Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258 (7/8): 1224- 1234
doi: 10.1016/j.wear.2004.03.066
|
7 |
罗林, 张格明, 吴旺青, 等. 轮轨系统轨道平顺状态的控制[M]. 北京: 中国铁道出版社, 2006: 115-135.
|
8 |
陈亮. 基于弦测法的钢轨波磨动态检测关键技术研究[D]. 长沙: 湖南大学, 2019. CHEN Liang. Research on key issue of rail corrugation dynamic measurement based on chord measurement method [D]. Changsha: Hunan University, 2019.
|
9 |
魏珲, 刘宏立, 马子骥, 等 基于组合弦测的钢轨波磨广域测量方法[J]. 西北大学学报: 自然科学版, 2018, 48 (2): 199- 208 WEI Hun, LIU Hong-li, MA Zi-ji, et al A wide-area measurement method of rail corrugation based on the combination-chord system[J]. Journal of Northwest University: Natural Science Edition, 2018, 48 (2): 199- 208
|
10 |
GRASSIE S L Measurement of railhead longitudinal profiles: a comparison of different techniques[J]. Wear, 1996, 191 (1/2): 245- 251
|
11 |
徐金辉, 王平, 汪力, 等 轨道高低不平顺敏感波长的分布特征及其影响因素的研究[J]. 铁道学报, 2015, 37 (7): 72- 78 XU Jin-hui, WANG Ping, WANG Li, et al Research on the distribution characteristics and influence factors of sensitive wavelength of track vertical profile irregularity[J]. Journal of the China Railway Society, 2015, 37 (7): 72- 78
|
12 |
周富强, 张广军, 朱奎义, 等. 钢轨磨耗激光视觉动态测量装置及测量方法: 200510123725. 0[P]. 2006-05-24.
|
13 |
王文健, 刘启跃, 王衡禹, 等. 钢轨波浪形磨损激光测量设备: 201220116237. 2[P]. 2012-11-07.
|
14 |
李清勇, 章华燕, 任盛伟, 等 基于钢轨图像频域特征的钢轨波磨检测方法[J]. 中国铁道科学, 2016, 37 (1): 24- 30 LI Qing-yong, ZHANG Hua-yan, REN Sheng-wei, et al detection method for rail corrugation based on rail image feature in frequency domain[J]. China Railway Science, 2016, 37 (1): 24- 30
|
15 |
马子骥, 董艳茹, 刘宏立, 等 基于多线结构光视觉的钢轨波磨动态测量方法[J]. 仪器仪表学报, 2018, 39 (6): 189- 197 MA Zi-ji, DONG Yan-ru, LIU Hong-li, et al Rail corrugation dynamic measurement method based on multi-line structured-light vision[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 189- 197
|
16 |
HOPKINS B M, TAHERI S. Broken rail prediction and detection using wavelets and artificial neural networks [C]// Proceedings of the ASME/ASCE/IEEE 2011 Joint Rail Conference. Pueblo: [s.n.], 2011: 77-84.
|
17 |
HOPKINS B M, TAHERI S. Track health monitoring using wavelets [C]// Proceedings of the ASME 2010 Rail Transportation Division Fall Technical Conference. Roanoke: [s.n.], 2010: 9-15.
|
18 |
GOMES R, BATISTA A, ORTIGUEIRA M D, et al A tool for the detection and quantification of rail corrugation[J]. Theoretical and Experimental Chemistry, 2010, 46 (3): 153- 157
doi: 10.1007/s11237-010-9132-3
|
19 |
WEI X K, LIU F, JIA L M Urban rail track condition monitoring on in-service vehicle acceleration measurements[J]. Measurement, 2016, 80: 217- 228
doi: 10.1016/j.measurement.2015.11.033
|
20 |
KOJIMA T, TSUNASHIMA H, MATSUMOTO A. Fault detection of railway track by multi-resolution analysis [M]// ALLAN J, RUMSEY A F, SCIUTTO G, et al. Computers in Railways X. [S.l.]: WIT Press, 2006, 88: 955-964.
|
21 |
谢清林, 陶功权, 刘孟奇, 等 数学形态学滤波在钢轨波磨波长识别中的应用[J]. 中南大学学报: 自然科学版, 2021, 52 (5): 1724- 1732 XIE Qing-lin, TAO gong-quan, LIU meng-qi, et al Application of mathematical morphology filter in recognition of rail corrugation wavelength[J]. Journal of Central South University: Science and Technology, 2021, 52 (5): 1724- 1732
|
22 |
周成, 高建敏 基于三维轮轨瞬态动力学模型的钢轨波磨不平顺动力影响与识别[J]. 铁道科学与工程学报, 2020, 17 (4): 841- 848 ZHOU cheng, GAO Jian-min Dynamic effect and identification of rail corrugation irregularity based on the three-dimensional wheel-rail transient dynamic model[J]. Journal of Railway Science and Engineering, 2020, 17 (4): 841- 848
|
23 |
田中博文, 蔡千华 钢轨波磨的车上监视方法[J]. 国外铁道车辆, 2017, 54 (1): 31- 36 TANAKA Hirofumi, CAI Qian-hua The on-vehicle supervision method for rail corrugation[J]. Foreign Rolling Stock, 2017, 54 (1): 31- 36
|
24 |
郭建强, 朱雷威, 刘晓龙, 等 地铁司机室噪声与钢轨波磨关系的试验与仿真研究[J]. 机械工程学报, 2019, 55 (16): 141- 147 GUO Jian-qiang, ZHU Lei-wei, LIU Xiao-long, et al Experimental and simulation study on the relationship between interior noise of metro cab and rail corrugation[J]. Journal of Mechanical Engineering, 2019, 55 (16): 141- 147
doi: 10.3901/JME.2019.16.141
|
25 |
冯陈程, 刘晓龙, 李伟, 等 短波长钢轨波磨对地铁车辆车内噪声的影响[J]. 噪声与振动控制, 2018, 38 (6): 113- 117 FENG Chen-cheng, LIU Xiao-long, Li Wei, et al Influence of short pitch rail corrugation on interior noise of metro vehicles[J]. Noise and Vibration Control, 2018, 38 (6): 113- 117
|
26 |
江航, 尚春阳, 高瑞鹏 基于EMD和神经网络的轮轨故障噪声诊断识别方法研究[J]. 振动与冲击, 2014, 33 (17): 34- 38 JIANG Hang, SHANG Chun-yang, GAO Rui-peng Wheel /rail fault noise diagnosis method based on EMD and neural network[J]. Journal of Vibration and Shock, 2014, 33 (17): 34- 38
|
27 |
周志青, 胡茑庆, 黄玉, 等. 基于支持向量机的轨道波磨检测方法研究[C]// 第十三届全国振动理论及应用学术会议论文集. 西安: [s.n.], 2019: 193−197. ZHOU Zhi-qing, HU Niao-qing, HUANG Yu, et al. Research on rail corrugation detection method based on support vector machine [C]// Proceedings of the 13th National Conference on Vibration Theory and Applications. Xi'an: [s.n.], 2019: 193-197.
|
28 |
赵立强. 基于列车振动信息的钢轨波磨状态检测与识别研究[D]. 北京: 北京交通大学, 2021. ZHAO Li-qiang. Research on detection and recognition of rail corrugation based on train vibration information [D]. Beijing: Beijing Jiaotong University, 2021.
|
29 |
张珍珍. 基于时频分析与数据挖掘的钢轨波磨检测[D]. 北京: 华北电力大学, 2021. ZHANG Zhen-zhen. Detection of rail corrugation based on time-frequency analysis and data mining [D]. Beijing: North China Electric Power University, 2021.
|
30 |
肖炳环, 刘金朝, 牛留斌, 等 基于 WPD-ASTFT 和 SVM 重载铁路钢轨波磨诊断方法[J]. 铁道车辆, 2021, 59 (6): 31- 35+48 XIAO Bing-huan, LIU Jin-zhao, NIU Liu-bin, et al Diagnosis method of rail corrugation for heavy haul railway based on WPD-ASTFT and SVM[J]. Railway Vehicles, 2021, 59 (6): 31- 35+48
|
31 |
谢清林, 陶功权, 温泽峰 基于一维卷积神经网络的地铁 钢轨波磨识别方法[J]. 中南大学学报: 自然科学版, 2021, 52 (4): 1371- 1379 XIE Qing-lin, TAO Gong-quan, WEN Ze-feng Detection method of metro rail corrugation based on 1-dimensional convolutional neural network[J]. Journal of Central South University: Science and Technology, 2021, 52 (4): 1371- 1379
|
32 |
谢乐, 衡熙丹, 刘洋, 等 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2266- 2272 XIE Le, HENG Xi-dan, LIU Yang, et al Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2266- 2272
|
33 |
陈之毅, 黄鹏飞 基于概率神经网络的地铁车站易损性分析[J]. 同济大学学报: 自然科学版, 2021, 49 (6): 791- 798+756 CHEN Zhi-yi, HUANG Peng-fei Fragility analysis of a subway station based on probability artificial neural network[J]. Journal of Tongji University: Natural Science, 2021, 49 (6): 791- 798+756
|
34 |
冯建鑫, 王雅雷, 王强, 等 基于改进粒子群算法的快速反射镜自抗扰控制[J]. 系统工程与电子技术, 2021, 43 (12): 3675- 3682 FENG Jin-xin, WANG Ya-lei, WANG Qiang, et al Fast reflector self-anti-disturbance control based on improved particle swarm algorithm[J]. Systems Engineering and Electronics Technology, 2021, 43 (12): 3675- 3682
|
35 |
陈昆弘, 刘小峰 基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取[J]. 振动与冲击, 2017, 36 (22): 80- 85+157 CHEN Kun-hong, LIU Xiao-feng Incipient fault diagnosis of rolling element bearing based on adaptive maximum correlated kurtosis deconvolution[J]. Journal of Vibration and Shock, 2017, 36 (22): 80- 85+157
|
36 |
陈秋莲, 郑以君, 蒋环宇, 等 基于神经网络改进粒子群算法的动态路径规划[J]. 华中科技大学学报: 自然科学版, 2021, 49 (2): 51- 55 CHEN Qiu-lian, ZHENG Yi-jun, JIANG Huan-yu, et al Improved particle swarm optimization algorithm based on neural network for dynamic path planning[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49 (2): 51- 55
|
37 |
全国声学标准化技术委员会. 声学 轨道车辆内部噪声测量: GB/T 3449—2011 [S]. 北京: 中国标准出版社, 2011.
|
38 |
European Committee for Standardization. Acoustics-railway applications-measurement of noise emitted by railbound vehicles: ISO3095: 2013 [S]. London: British Standards Institution, 2013.
|
39 |
刘泽鹏. 基于经验模态分解和优化概率神经网络的变压器励磁涌流识别研究[D]. 北京: 华北电力大学, 2021. LIU Ze-peng. Research on transformer magnetizing inrush current identification based on empirical mode decomposition and optimal probability [D]. Beijing: North China Electric Power University, 2021.
|
40 |
尉雅晨. 改进粒子群算法研究及其在柔性车间调度问题中的应用[D]. 兰州: 兰州理工大学, 2020. WEI Ya-chen. Research on improved particle swarm optimization and its application in flexible job shop scheduling [D]. Lanzhou: Lanzhou University of Technology, 2020.
|
41 |
严阳. 粒子群算法的改进及其在非线性问题中的应用[D]. 广州: 华南理工大学, 2010. YAN Yang. The improved of particle swarm optimization and its application in solving nonlinear problem [D]. Guangzhou: South China University of Technology, 2010.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|