Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1293-1302    DOI: 10.3785/j.issn.1008-973X.2025.06.020
机械工程     
基于压电与电磁复合效应的超声振动能量采集方法
汪御飞(),李康康,张海彬,陈渊博,王光庆*()
浙江工商大学 信息与电子工程学院(萨塞克斯人工智能学院),浙江 杭州 310018
Ultrasonic vibration energy harvesting method based on piezoelectric and electromagnetic composite effects
Yufei WANG(),Kangkang LI,Haibin ZHANG,Yuanbo CHEN,Guangqing WANG*()
School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang Gongshang University, Hangzhou 310018, China
 全文: PDF(2867 KB)   HTML
摘要:

为了高效采集超声设备中的振动能量并将其转换为电能,提出基于压电与电磁复合效应的超声振动能量采集方法. 针对超声振动幅值小、加速度大的特点,在超声设备中集成设计基于正压电效应的环状压电振动能量采集器,直接采集并转换设备运行中的微幅超声振动能量;针对超声振动幅值小、频率高的特点,设计将微观的超声振动转变为宏观的大幅旋转运动的转换机构,基于电磁感应机理在超声设备中进一步集成设计旋转运动能量采集器,实现超声振动能量的微观/宏观转换与采集. 基于压电效应和电磁感应原理建立压电/电磁复合超声振动能量采集与转换模型,通过仿真分析模型参数对超声振动能量采集性能的影响,通过实验验证了模型的准确性. 研究结果表明,在频率为38.2 kHz、幅值为1.88 μm的超声激励下,复合采集器的输出电压为46.7 V,压电和电磁能量采集器的输出功率分别为104.3、43.8 mW,输出功率满足低功耗电子器件的供电需求.

关键词: 超声振动压电效应电磁旋转能量采集动力学模型    
Abstract:

A method for harvesting ultrasonic vibration energy based on piezoelectric and electromagnetic composite effects was proposed, to efficiently harvest vibration energy from ultrasound equipment and convert it into electrical energy. Aiming at the characteristics of small amplitude and large acceleration of ultrasonic vibration, a circular piezoelectric vibration energy harvester based on positive piezoelectric effect was integrated and designed in ultrasonic equipment to directly harvest and convert the micro ultrasonic vibration energy in equipment operation. A conversion mechanism was designed to transform micro ultrasonic vibration into macroscopic large-scale rotational motion, taking into account the characteristics of small amplitude and high frequency of ultrasonic vibration. Based on the electromagnetic induction mechanism, a rotational energy harvester was further integrated into the ultrasonic equipment to achieve the micro/macro conversion and acquisition of ultrasonic vibration energy. A piezoelectric/electromagnetic composite ultrasonic vibration energy harvesting and conversion model was established based on the piezoelectric effect and electromagnetic induction principle. The influence of model parameters on the the performance of ultrasonic vibration energy harvesting was simulated and analyzed, and the accuracy of the model was experimentally verified. Results showed that under the ultrasonic excitation with a frequency of 38.2 kHz and amplitude of 1.88 μm, the output voltage of the composite harvester was 46.7 V, and the output power of the piezoelectric and electromagnetic energy harvesters were 104.3 mW and 43.8 mW, respectively. The output power met the power supply requirements of low-power electronic devices.

Key words: ultrasound vibration    piezoelectric effect    electromagnetic rotating    energy harvesting    dynamic model
收稿日期: 2024-06-05 出版日期: 2025-05-30
CLC:  TM 354  
基金资助: 浙江省自然科学基金资助项目(LY24E070002);浙江省教育厅项目(Y202250102).
通讯作者: 王光庆     E-mail: 907445086@qq.com;wgqjx@zjsu.edu.cn
作者简介: 汪御飞(1998—),男,硕士生,从事信号与信息处理研究. orcid.org/0009-0006-8653-0425. E-mail:907445086@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
汪御飞
李康康
张海彬
陈渊博
王光庆

引用本文:

汪御飞,李康康,张海彬,陈渊博,王光庆. 基于压电与电磁复合效应的超声振动能量采集方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1293-1302.

Yufei WANG,Kangkang LI,Haibin ZHANG,Yuanbo CHEN,Guangqing WANG. Ultrasonic vibration energy harvesting method based on piezoelectric and electromagnetic composite effects. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1293-1302.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1293

图 1  压电/电磁复合超声振动能量采集机理示意图
图 2  压电/电磁复合能量采集机理图
图 3  压电超声产生/采集一体化结构
图 4  超声/旋转转换结构
图 5  摩擦界面线接触模型
参数数值
摩擦层的弹性模量E0/GPa67
摩擦层的厚度h0/mm0.5
凸齿上产生的行波数n9
凸齿表面至中性层的距离a/mm2.5
凸齿上齿的总数nt90
动摩擦因素$ \mu_{\mathrm{d}} $0.14
转换结构与圆盘平均接触半径Rav/mm27
转换结构与圆盘径向接触宽度b/mm2
转换结构的转动惯量J/(kg·m2)8.22×10?5
法向预压力Fn/N2
缠绕线圈半径r/mm9.8
永磁铁表磁Br/T100
永磁铁底面直径D/mm10
永磁铁的高H/mm15
真空中磁导率$ \mu_0 $/(H·m?1)$ 4{\text{π}}$×10?7
磁力系数ko422000
线圈匝数N500
磁铁与电机轴心的距R/cm3
表 1  压电能量采集器的结构尺寸和材料参数
图 6  输出电压和功率随激励频率变化的仿真结果
图 7  超声振幅和电压仿真波形图
图 8  磁铁对转换结构转速影响的仿真结果
图 9  磁铁数量、线圈与磁铁的距离对产生感应电压影响的仿真结果
图 10  磁铁高度和线圈匝数对产生感应电压的综合影响的仿真结果
图 11  压电/电磁复合能量采集器原理样机
图 12  压电/电磁复合能量采集器实验系统
名称材料ρo/(kg·m?3)G/GPaν
压电陶瓷PZT-8750076.50.32
金属基体磷青铜890067.00.30
表 2  超声波电机主要材料及特性
图 13  压电超声能量采集器原理样机
图 14  输出电压随振动幅值变化的实验结果
图 15  激励电压和功率随激励频率的变化
图 16  采集到的PZT输出电压波形
图 17  感应电压和功率随磁铁数量及磁铁距离的变化
图 18  感应电压和功率随线圈匝数和磁铁体积的变化
图 19  输出电压随时间的变化
图 20  负载对输出电压和功率影响的实验结果
图 21  压电/电磁旋转复合超声振动能量采集器点亮LED效果图
1 王云灏, 孙铭会, 辛毅, 等 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报: 工学版, 2022, 56 (4): 702- 710
WANG Yunhao, SUN Minghui, XIN Yi, et al Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 702- 710
2 蒋建东, 张玖利, 牛瑞征, 等 耦合弯曲-剪切载荷L型压电振子的低宽频特性[J]. 浙江大学学报: 工学版, 2021, 55 (1): 162- 168
JIANG Jiandong, ZHANG Jiuli, NIU Ruizheng, et al Low broadband characteristics of L-shaped piezoelectric cantilever beam with bending shear load[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 162- 168
3 HONG S D, KIM K B, HWANG W, et al Enhanced energy-generation performance of a landfilled road-capable piezoelectric harvester to scavenge energy from passing vehicles[J]. Energy Conversion and Management, 2020, 215: 112900
4 ZHOU S, HOU L, WANG G, et al Ultrasound vibration energy harvesting from a rotary-type piezoelectric ultrasonic actuator[J]. Mechanical Systems and Signal Processing, 2023, 197: 110337
5 BOUHEDMA S, BIN TAUFIK J, LANGE F, et al Different scenarios of autonomous operation of an environmental sensor node using a piezoelectric-vibration-based energy harvester[J]. Sensors, 2024, 24 (4): 1338
6 何悦, 袁天辰, 杨俭, 等 基于MFC的压电振动能量采集器[J]. 电子科技, 2025, 38 (3): 16- 21
HE Yue, YUAN Tianchen, YANG Jian, et al Research on MFC-based piezoelectric vibration energy harvester[J]. Electronic Science and Technology, 2025, 38 (3): 16- 21
doi: 10.16180/j.cnki.issn1007-7820.2025.03.003
7 林琳, 王保志, 赖丽燕, 等 基于激光加工的阶梯梁式微压电振动能量采集器[J]. 微纳电子技术, 2022, 59 (11): 1169- 1176
LIN Lin, WANG Baozhi, LAI Liyan, et al Ladder-beam micro piezoelectric vibration energy harvester based on laser machining[J]. Micronanoelectronic Technology, 2022, 59 (11): 1169- 1176
8 费少华, 丁会明, 汪海晋, 等 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报: 工学版, 2023, 57 (4): 657- 665
FEI Shaohua, DING Huiming, WANG Haijin, et al Ultrasound-guided fine Z-pin insertion system[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (4): 657- 665
9 吕旖雯, 金妍, 高安然, 等 基于激光切割的叉指结构悬臂梁式压电振动能量采集器[J]. 微纳电子技术, 2023, 60 (7): 1086- 1093
LV Yiwen, JIN Yan, GAO Anran, et al Laser cutting based cantilever beam piezoelectric vibration energy harvester with interdigital structure[J]. Micronanoelectronic Technology, 2023, 60 (7): 1086- 1093
10 董可杰. 低频振动拱式压电能量采集器的设计与研究 [D]. 广州: 广州大学, 2023.
DONG Kejie. Design and research of low-frequency vibration arch piezoelectric energy harvester [D]. Guangzhou: Guangzhou University, 2023.
11 姜瑀, 宋芳, 熊玉仲 二次碰撞升频压电振动能采集器研究[J]. 农业装备与车辆工程, 2023, 61 (3): 70- 74
JIANG Yu, SONG Fang, XIONG Yuzhong Research on a secondary collision uplift piezoelectric vibration energy harvester[J]. Agricultural Equipment and Vehicle Engineering, 2023, 61 (3): 70- 74
doi: 10.3969/j.issn.1673-3142.2023.03.015
12 徐玮含, 罗安信, 马鑫宇, 等 基于惯性旋转结构的低频振动能量采集器研究[J]. 机械工程学报, 2022, 58 (20): 111- 119
XU Weihan, LUO Anxin, MA Xinyu, et al Research on energy harvester for low frequency vibration based on inertial rotary structure[J]. Journal of Mechanical Engineering, 2022, 58 (20): 111- 119
13 MA T, CAO H, SHI R, et al Research on piezoelectric vibration energy harvester for cutting part of roadheader[J]. Ferroelectrics, 2024, 618 (4): 1138- 1156
14 梁光胜, 李艺 风车型低频压电振动能量采集器的研究与设计[J]. 压电与声光, 2018, 40 (3): 423- 427
LIANG Guangsheng, LI Yi Research and design of low-frequency piezoelectric vibration energy harvester with windmill structure[J]. Piezoelectrics and Acoustooptics, 2018, 40 (3): 423- 427
doi: 10.11977/j.issn.1004-2474.2018.03.027
15 HE L, KURITA H, NARITA F Multimode auxetic piezoelectric energy harvester for low-frequency vibration[J]. Smart Material Structures, 2024, 33 (3): 035020
16 侯志伟, 陈仁文, 刘祥建. V型压电换能器的有限元分析与实验 [J]. 振动 测试与诊断, 2012, 32(6): 892–896, 1031–1032.
HOU Zhiwei, CHEN Renwen, LIU Xiangjian. Finite element analysis and experiment for V shape piezoelectric transducer [J]. Journal of Vibration, Measurement and Diagnosis, 2012, 32(6): 892–896, 1031–1032.
17 WANG Z L , SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312(5771): 242−246.
18 彭召洋, 宋芳, 熊玉仲 三稳态压电-电磁复合能量采集器性能研究[J]. 压电与声光, 2023, 45 (6): 872- 877
PENG Zhaoyang, SONG Fang, XIONG Yuzhong Research on a tristable piezoelectric-electromagnetic composite energy harvesters[J]. Piezoelectrics and Acoustooptics, 2023, 45 (6): 872- 877
doi: 10.11977/j.issn.1004-2474.2023.06.015
19 蒋春容, 薛鑫岩, 赵子龙, 等 环形行波超声波电机面接触分析及转子结构优化设计[J]. 电机与控制应用, 2023, 50 (5): 39- 45
JIANG Chunrong, XUE Xinyan, ZHAO Zilong, et al Surface contact analysis of ring type traveling wave ultrasonic motor and optimization of the rotor structure[J]. Electric Machines and Control Application, 2023, 50 (5): 39- 45
20 蒋春容, 赵子龙, 陆旦宏, 等 环形行波超声波电机动态接触摩擦特性建模与分析[J]. 电工技术学报, 2023, 38 (8): 2036- 2047
JIANG Chunrong, ZHAO Zilong, LU Danhong, et al Modeling and analysis on dynamic contact and friction characteristics of ring type traveling wave ultrasonic motors[J]. Transactions of China Electrotechnical Society, 2023, 38 (8): 2036- 2047
21 张艳军, 崔奕超, 雷美荣, 等 雾化夹心式压电超声换能器的理论设计[J]. 机械工程与自动化, 2024, (3): 78- 80
ZHANG Yanjun, CUI Yichao, LEI Meirong, et al Theoretical design of atomized sandwich piezoelectric ultrasonic transducer[J]. Mechanical Engineering and Automation, 2024, (3): 78- 80
doi: 10.3969/j.issn.1672-6413.2024.03.026
22 王虎. 电磁式振动能量采集器的设计及输出性能研究 [D]. 北京: 华北电力大学, 2023.
WANG Hu. Research on the design and output performance of electromagnetic vibration energy harvester [D]. Beijing: North China Electric Power University , 2023.
23 刘高峰. 非线性压电-电磁复合能量收集器 [D]. 秦皇岛: 燕山大学, 2022.
LIU Gaofeng. Nonlinear piezoelectric electromagnetic composite energy harvester [D]. Qinhuangdao: Yanshan University, 2022.
24 安金龙, 赵明, 岳文贺, 等 低频振动倍频电磁式发电装置设计及仿真研究[J]. 微电机, 2017, 50 (4): 6- 10
AN Jinlong, ZHAO Ming, YUE Wenhe, et al Design and simulation of low frequency vibration frequency multiplication electromagnetic generator[J]. Micromotors, 2017, 50 (4): 6- 10
25 杨俊斌, 宋芳, 申俊, 等 基于复合梁结构的压电-电磁能量收集器研究[J]. 传感技术学报, 2023, 36 (9): 1368- 1376
YANG Junbin, SONG Fang, SHEN Jun, et al Research on piezoelectric-electromagnetic energy harvester based on composite beam structure[J]. Chinese Journal of Sensors and Actuators, 2023, 36 (9): 1368- 1376
doi: 10.3969/j.issn.1004-1699.2023.09.005
26 周铄. 多功能压电超声换能器的有限元设计及其机电转换特性研究 [D]. 杭州: 浙江工商大学, 2023.
ZHOU Shuo. Finite element design and electromechanical conversion characteristics of multifunctional piezoelectric ultrasonic transducer [D]. Hangzhou: Zhejiang Gongshang University, 2023.
[1] 费少华,丁会明,汪海晋,李江雄. 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报(工学版), 2023, 57(4): 657-665.
[2] 刘高平,宋执环. 基于射频能量采集的电子标签设计方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1666-1675.
[3] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[4] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[5] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[6] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[7] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.
[8] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[9] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[10] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[11] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[12] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[13] 郑钰馨, 奚鹰, 卜王辉, 李梦如. RV减速器5自由度纯扭转模型非线性特性分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2098-2109.
[14] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[15] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.