浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 590-597    DOI: 10.3785/j.issn.1008-973X.2022.03.018
 土木工程、水利工程

1. 武汉大学 水资源与水电工程科学国家重点实验室，湖北 武汉 430072
2. 西安理工大学 西北旱区生态水利国家重点实验室，陕西 西安 710048
Mathematical model for urban flooding with effect of drainage of street inlets
Shuai-ling GAO1(),Jun-qiang XIA1,*(),Bo-liang DONG1,Mei-rong ZHOU1,Jing-ming HOU2
1. State Key Laboratory of Water Resource and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
 全文: PDF(22421 KB)   HTML

Abstract:

A two-dimensional hydrodynamic model including the discharge calculation module of street inlets was established, in order to study the effect of drainage of street inlets on urban flooding. The model was calibrated and verified by the flume test data with typical block structure. The Nash-Sutcliffe efficiency coefficient of most gauging points (over 85% of the points) was above 0.77. The model was applied to an urban street block in Glasgow, UK, and the maximum difference of the total drainage volume of street inlets calculated by the integrated velocity formula and the orifice-weir flow formula account for 26.5% of the total water volume. The former, considering the limiting effect of the side branch pipe on the discharge capacity of street inlets, is more in line with the actual situation. Compared with the case without street inlets draining, the calculation results which applied the integrated velocity formula show that the maximum water depth on the main road and the maximum submergence range is reduced by 0.395 m and 29.4% respectively, and the arrival time of the flood wave at the maximum water depth is delayed by 100 s.

Key words: urban flood    numerical simulation    hydrodynamic model    street inlet    discharge formula

 CLC: TV 131.4

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 高帅领 夏军强 董柏良 周美蓉 侯精明

#### 引用本文:

Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.

#### 链接本文:

 图 1  平箅式雨水口泄流能力 图 2  洪水演进模型布置平面示意图 图 3  各测站计算和实测水深比较 图 4  不同雨水口泄流公式模拟地表水深、雨水口下泄流量和排水总量 图 5  英国Glasgow市一街区雨水口添加位置及数量[20] 图 6  有无雨水口泄流时各监测点处的水深比较 图 7  有无雨水口泄流时易涝点处的流速比较 图 8  有无雨水口泄流0~2 h最大淹没范围及水深 表 1  有无雨水口泄流0~2 h淹没面积变化
 1 CRED. EM-DAT [DB/OL]. [2021-02-19]. https://public.emdat.be/data. 2 赵江, 张林洪, 吴培关, 等 公路雨水口篦子泄水量试验研究[J]. 城市道桥与防洪, 2004, (4): 67- 70 ZHAO Jiang, ZHANG Lin-hong, WU Pei-guan, et al Study on test of sluice capacity of double-edged fine-toothed comb at rainfall inlet at highway[J]. Urban Roads Bridges and Flood Control, 2004, (4): 67- 70 doi: 10.3969/j.issn.1009-7716.2004.04.018 3 陈倩, 夏军强, 董柏良 城市洪涝中雨水口泄流能力的试验研究[J]. 水科学进展, 2020, 31 (1): 10- 17CHEN Qian, XIA Jun-qiang, DONG Bo-liang Experimental study on discharge capacity of street inlet in urban flooding[J]. Advances in Water Science, 2020, 31 (1): 10- 17 4 PALLA A, COLLI M, CANDELA A, et al Pluvial flooding in urban areas: the role of surface drainage efficiency[J]. Journal of Flood Risk Management, 2018, 11: S663- S676 doi: 10.1111/jfr3.12246 5 胡伟贤, 何文华, 黄国如, 等 城市雨洪模拟技术研究进展[J]. 水科学进展, 2010, 21 (1): 137- 144HU Wei-xian, HE Wen-hua, HUANG Guo-ru, et al Review of urban storm water simulation techniques[J]. Advances in Water Science, 2010, 21 (1): 137- 144 6 夏军强, 王光谦, 谈广鸣 复杂边界及实际地形上溃坝洪水流动过程模拟[J]. 水科学进展, 2010, 21 (3): 289- 298XIA Jun-qiang, WANG Guang-qian, TAN Guang-ming Two-dimensional modeling of dam-break floods over actual terrain with complex geometries using a finite volume method[J]. Advances in Water Science, 2010, 21 (3): 289- 298 7 刘璐, 孙健, 袁冰, 等 城市暴雨地表积水过程研究: 以清华大学校园为例[J]. 水力发电学报, 2019, 38 (8): 98- 109 LIU Lu, SUN Jian, YUAN Bing, et al Surface flooding in urban areas under heavy downpours: case study of Tsinghua University campus[J]. Journal of Hydroelectric Engineering, 2019, 38 (8): 98- 109 doi: 10.11660/slfdxb.20190809 8 LIANG D F, LIN B L, FALCONER R A Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme[J]. International Journal for Numerical Methods in Fluids, 2007, 53 (5): 811- 826 doi: 10.1002/fld.1305 9 NOH S J, LEE S, AN H, et al Ensemble urban flood simulation in comparison with laboratory-scale experiments: impact of interaction models for manhole, sewer pipe, and surface flow[J]. Advances in Water Resources, 2016, 97: 25- 37 doi: 10.1016/j.advwatres.2016.08.015 10 胡维芬. 城市道路排水设施水力特性研究[D]. 天津: 天津大学, 2009: 12-25.HU Wei-fen. Research on the hydraulic characteristics of drainage facilities of the urban road [D]. Tianjin: Tianjin University, 2009: 12-25. 11 安智敏, 岑国平, 吴彰春 雨水口泄水量的试验研究[J]. 中国给水排水, 1995, 11 (1): 21- 24AN Zhi-min, CEN Guo-ping, WU Zhang-chun Experimental study on the capacity of storm inlets[J]. China Water and Wastewater, 1995, 11 (1): 21- 24 12 姚飞骏 雨水口的流量计算方法探讨[J]. 中国给水排水, 2013, 29 (14): 45- 48 YAO Fei-jun Discussion on calculation method of flow rate at rainwater inlet[J]. China Water and Wastewater, 2013, 29 (14): 45- 48 doi: 10.3969/j.issn.1000-4602.2013.14.012 13 GóMEZ M, RUSSO B Methodology to estimate hydraulic efficiency of drain inlets[J]. Proceedings of the Institution of Civil Engineers-Water Management, 2011, 164 (2): 81- 90 doi: 10.1680/wama.900070 14 北京市市政工程设计研究总院有限公司. 雨水口(16S518): GJBT—1404[S]. 北京: 中国计划出版社, 2016: 66. 15 HUNTER N M, BATES P D, NEELZ S, et al Benchmarking 2D hydraulic models for urban flooding[J]. Proceedings of the Institution of Civil Engineers: Water Management, 2008, 161 (1): 13- 30 doi: 10.1680/wama.2008.161.1.13 16 谭维炎. 计算浅水动力学—有限体积法[M]. 北京: 清华大学出版社, 1998: 107. 17 HARTEN A High resolution scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49 (3): 357- 393 doi: 10.1016/0021-9991(83)90136-5 18 DONG B L, XIA J Q, ZHOU M R, et al Experimental and numerical model studies on flash flood inundation processes over a typical urban street[J]. Advances in Water Resources, 2021, 147: 103824 doi: 10.1016/j.advwatres.2020.103824 19 LIANG D F, FALCONER R A, LIN B L Coupling surface and subsurface flows in a depth averaged flood wave model[J]. Journal of Hydrology, 2007, 337 (1/2): 147- 158
 [1] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578. [2] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398. [3] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134. [4] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461. [5] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347. [6] 陈功,郑春华,翁献明,HAMEEDBaustani,胡鸿昊,马晓宇,柳景青. 基于多水文数据关联分析的雨水口异常诊断[J]. 浙江大学学报(工学版), 2021, 55(1): 55-61. [7] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794. [8] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857. [9] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714. [10] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388. [11] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127. [12] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100. [13] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898. [14] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308. [15] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.