Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1706-1714    DOI: 10.3785/j.issn.1008-973X.2020.09.006
土木与交通工程     
管幕预筑法顶管施工顺序对地表沉降的影响
杨松松1(),王梅1,*(),杜建安2,郭勇3,耿炎1
1. 太原理工大学 矿业工程学院,山西 太原 030024
2. 太原市住房和城乡建设委员会,山西 太原 030024
3. 中铁十四局有限公司,山东 泰安 271000
Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement
Song-song YANG1(),Mei WANG1,*(),Jian-an DU2,Yong GUO3,Yan GEN1
1. College of Mining Engineering, Taiyuan University of Technology, Taiyuani 030024, China
2. Shanxi Provincial Housing and Urban-Rural Construction Committee, Taiyuan 030024, China
3. China Railway 14th Bureau Group Co. Ltd, Tai’an 271000, China
 全文: PDF(1453 KB)   HTML
摘要:

以太原火车站管幕预筑法(PPM)大直径顶管群施工为背景,采用有限差分软件FLAC3D对优选的8种有代表性的顶管群施工顺序进行数值模拟,研究不同大直径顶管群施工顺序下的地表变形特征. 试验结果表明:先施工管幕上排顶管的方案所引起的地表沉降量小于其他方案,与先施工管幕下排顶管的施工方案相比,其所引起的地表沉降要小1 cm;管幕上排顶管与周围土体之间形成管间微型土拱,并在管幕上方密排顶管之间形成组合土拱效应. 该组合土拱效应不仅可以承担一部分管幕上覆荷载,而且可以减小管幕下排顶管施工对地表的扰动,有效减小了管幕预筑法密排顶管群施工所引起的地表沉降.

关键词: 管幕预筑法(PPM)密排顶管群顶管顺序组合土拱效应数值模拟    
Abstract:

Taiyuan Railway Station’s application of the large-diameter pipe-roof pre-construction method (PPM) was used as the engineering background. A finite difference method software (FLAC3D) was employed to numerically simulate the eight representative pipe jacking construction sequences, to study the surface deformation characteristics under the construction sequence of the large diameter pipe jacking group. The test results show that the surface settlement caused by the first construction of the pipe jacking scheme was less than other schemes, and the ground settlement caused by the construction scheme was 1 cm smaller than that of the construction scheme of the pipe jacking scheme first. An inter-pipe soil arch was formed between the upper row of jacking pipes on the pipe-roof and the surrounding soil, and a combined soil arching effect was formed between the dense row of jacking pipes above the upper pipe. The pipe soil arching effect can not only bear part of the overburden load of the pipe roof, but also reduce the disturbance of the ground surface caused by the construction of the pipe jacking under the pipe-roof. The combined soil arching effect can effectively reduce the ground surface settlement caused by the construction of the dense row pipe jacking group with the pipe-roof pre-construction method.

Key words: pipe-roof pre-construction method (PPM)    densely packed pipe jacking group    pipe jacking sequence    combined soil arching effect    numerical simulation
收稿日期: 2019-08-23 出版日期: 2020-09-22
CLC:  TU 94  
基金资助: 国家自然科学基金资助项目(51704205);国家重点研发计划资助项目(2018YFC0808704)
通讯作者: 王梅     E-mail: 18435167584@163.com;wangmei@tyut.edu.com
作者简介: 杨松松(1994—),男,硕士生,从事地下工程施工研究. orcid.org/0000-0003-0394-3146. E-mail: 18435167584@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨松松
王梅
杜建安
郭勇
耿炎

引用本文:

杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.

Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.006        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1706

图 1  管幕预筑法施工工艺示意图
图 2  火车站南北下穿通道位置
层号 地层名称 颜色 状态 L1/m L2/m
1-1 杂填土 杂色 松散~稍密 地表可见 1.5~9.6
1-2 素填土 黄褐色 松散~稍密 0~4.6 4.0~9.6
2-1 新黄土 黄褐色 软塑 5.6~15.4 3.5~15.9
2-2 新黄土 黄褐色 硬塑 12.5~26.6 29.9
表 1  工程地质层分布
图 3  火车站北通道顶管位置
图 4  北通道钢管止水帷幕
图 5  北通道沉降监测点分布
图 6  火车站实测轨道与站台沉降曲线
土类名称 h/m ρ/(g·cm?3) γ/(kN·m?3) c/kPa φ/(°) μ E/MPa
填土 9.6 2.02 19.81 10.00 9.00 0.4 16.7
黄土 5.4 1.96 19.2 30.69 18.03 0.4 25.6
表 2  现场土体物理力学参数
图 7  施工顺序复杂的顶管方案
mm
方案 S0 S10 S20
方案一 35.6 37.2 38.0
方案二 34.0 36.8 37.5
方案三 40.2 38.8 39.6
方案四 44.8 46.2 42.0
方案五 43.4 46.2 44.8
方案六 42.2 46.2 44.8
方案七 40.2 42.2 42.8
方案八 38.6 39.2 38.9
表 3  不同方案引起的地表累计沉降预测
图 8  8种方案对距离始发位置10 m处的地表沉降预测结果
图 9  3种方案管幕中轴线累计地表变形预测
图 10  轨道10顶管施工地表沉降模拟与实测值曲线
图 11  2种方案的竖向位移云图
图 12  管间土拱模型与管土拱模型示意图
1 YANG X, LI Y S Research of surface settlement for a single arch long-span subway station using the pipe-roof pre-construction method[J]. Tunnelling and Underground Space Technology, 2018, 72: 210- 217
doi: 10.1016/j.tust.2017.11.024
2 PARK I J, KWAK C W, KIM S W, et al Verification and general behaviour of Tubular Roof & Trench method (TR&T) by numerical analysis in Korea[J]. Tunnelling and Underground Space Technology, 2006, 21 (3/4): 394
doi: 10.1016/j.tust.2005.12.205
3 ZHANG P, MA B S, ZENG C Key techniques for the largest curved pipe jacking roof to date: a case study of Gongbei tunnel[J]. Tunnelling and Underground Space Technology, 2016, 59: 134- 145
doi: 10.1016/j.tust.2016.07.001
4 邢凯, 陈涛, 黄常波 新管幕工法概述[J]. 城市轨道交通研究, 2009, 12 (8): 63- 67
XING Kai, CHEN Tao, HUANG Chang-bo On new tubular roof method[J]. Urban Mass Transit, 2009, 12 (8): 63- 67
doi: 10.3969/j.issn.1007-869X.2009.08.019
5 黎永索. 管幕预筑地铁站大开挖施工力学效应研究[D]. 长沙: 中南大学, 2012.
LI Yong-suo. Research of construction mechanics effects during large excavation to the subway stations built pipe-roof pre-construction method [D]. Changsha: Central South University, 2012.
6 杨仙, 张可能, 李钟, 等 地铁车站新预筑法施工中顶管间距的优化设[J]. 中国铁道科学, 2011, 32 (2): 61- 66
YANG Xian, ZHANG Ke-neng, LI Zhong, et al Optimal design of distance between jacking pipes of new pre-construction method in metro station[J]. China Railway Science, 2011, 32 (2): 61- 66
7 杨仙, 张可能, 李钟 管幕预筑法中钢管顶进对地面沉降的影响[J]. 沈阳工业大学学报, 2012, (4): 469- 473
YANG Xian, ZHANG Ke-neng, LI Zhong Influence of steel pipe jacking on earth surface settlement in pipe roof pre-construction method[J]. Journal of Shenyang University of Technology, 2012, (4): 469- 473
8 张可能, 彭环云, 许庆伟 管幕预筑法竖井开挖与顶管施工过程数值模拟分析[J]. 中国有色金属学报, 2012, 22 (3): 985- 990
ZHANG Ke-neng, PENG Huan-yun, XU Qing-wei Numerical simulation on construction process of working well and pipe jacking by pipe-roof pre-construction method[J]. Chinese Journal of Nonferrous Metals, 2012, 22 (3): 985- 990
9 王杨 地铁围护结构密排大直径顶管合理间距的选取[J]. 特种结构, 2013, (4): 98- 102
WANG Yang Selection of reasonable spacing of large-diameter pipe jacking for subway envelope structure[J]. Special Structure, 2013, (4): 98- 102
10 杨慧林 北京地区采用新管幕工法修建深埋地铁暗挖车站方案初探[J]. 铁道标准设计, 2012, (12): 72- 77
YANG Hui-lin Study on the scheme of constructing deep-buried subway underground excavation station by using new pipework method in Beijing[J]. Railway Standard Design, 2012, (12): 72- 77
11 黎永索, 张可能, 黄常波, 等 管幕预筑隧道地表沉降分析[J]. 岩土力学, 2011, 32 (12): 3701- 3707
LI Yong-suo, ZHANG Ke-neng, HUANG Chang-bo, et al Analysis of surface subsidence of tunnel built by pipe-roof pre-construction method[J]. Rock and Soil Mechanics, 2011, 32 (12): 3701- 3707
doi: 10.3969/j.issn.1000-7598.2011.12.027
12 阎石, 金春福, 钮鹏 新管幕工法大直径钢顶管施工力学特性数值模拟分析[J]. 施工技术, 2009, (S2): 376- 380
YAN Shi, JIN Chun-fu, NIU Peng Numerical simulation mechanical performance of steel pipes during new tubular roof construction[J]. Construction Technology, 2009, (S2): 376- 380
13 HISATAKE M, OHNO S Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J]. Tunnelling and Underground Space Technology, 2008, 23 (2): 120- 127
doi: 10.1016/j.tust.2007.02.002
14 杨仙. 管幕预筑法中密排大直径钢管群顶进研究[D]. 长沙: 中南大学, 2012.
YANG Xian. Reaserch of large diameter jacking-pipes with small space in pipe-roof pre-construction method [D]. Central South University, 2012.
15 喻军, 李元海 顶管泥浆套的物理性质对顶推力的影响[J]. 土木工程学报, 2015, (S2): 327- 331
YU Jun, LI Yuan-hai Effect of physical properties of mud screen of pipe-jacking on jacking force[J]. China Civil Engineering Journal, 2015, (S2): 327- 331
16 李晓娇, 欧阳煜 不同土质中隧道埋深对地表沉降的影响[J]. 佳木斯大学学报: 自然科学版, 2015, (33): 202- 206
LI Xiao-jiao, OUYANG Yu Response of ground surface settlement due to tunnel depth in different soil[J]. Journal of Jiamusi University: Natural Science Edition, 2015, (33): 202- 206
17 李剑. 管幕冻结施工工法研究与应用[D]. 西安: 长安大学, 2015.
LI Jian. Research and application of freeze-sealing pipe roof construction method [D]. Xi’an: Chang’an University, 2015.
18 刘营. 顶管施工对周围土体扰动范围影响研究[D]. 郑州: 郑州大学, 2016.
LIU Ying. Research on the influence of surrounding soil disturbance caused by pipe jacking [D]. Zhengzhou: Zhengzhou University, 2016.
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[4] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[10] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[11] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[12] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[13] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[14] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[15] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.