Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 381-388    DOI: 10.3785/j.issn.1008-973X.2020.02.020
机械与能源工程     
燃料电池客车高压舱氢气泄漏扩散
余亚波(),邓亚东*()
武汉理工大学 汽车工程学院,湖北 武汉 430070
Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus
Ya-bo YU(),Ya-dong DENG*()
School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(1374 KB)   HTML
摘要:

为了探究通风面积和通风格栅的布置方式对燃料电池客车高压舱氢气泄漏扩散的影响,建立三维高压舱氢气泄漏扩散模型. 利用数值模拟方法进行研究,结果表明,针对所提到的燃料电池客车高压舱,当总通风面积为0.096 m2时,从氢气开始泄漏到舱内氢气摩尔分数降至安全值以下,所需时间为25 s;当总通风面积为0.128 m2时,所需时间为21 s. 通风面积的增加可以显著加快舱内氢气的扩散. 当通风总面积一定时,相对于增大单个通风格栅的面积,在垂直方向上增加通风格栅的数量能够更加快速有效地使泄漏出的氢气排至舱外. 研究揭示了高压舱内氢气的泄漏扩散过程. 当高压舱内部发生氢气泄漏时,泄漏出的氢气沿舱室两侧向顶部扩散,并在左右两侧最高处聚集,应将氢气浓度传感器布置在舱室左右两侧最高处.

关键词: 燃料电池客车氢安全泄漏与扩散通风格栅数值模拟    
Abstract:

A three-dimensional hydrogen leakage and diffusion model of the high voltage cabin of fuel cell bus was established for investing the effect of the ventilation area and the ventilation grilles layout on the hydrogen leakage and diffusion of the high voltage cabin of fuel cell bus. The numerical simulation method was used, and the results showed that for the mentioned high voltage cabin, when the total ventilation area was 0.096 m2, it took 25 s from hydrogen started leaking to the hydrogen mole fraction inside the cabin dropped below the safety value. While the total ventilation area was 0.128 m2, it took 21 s. The increase in the ventilation area can significantly accelerate the diffusion of hydrogen in the cabin. When the total ventilation area is constant, compared with increasing the area of a single ventilation grille, increasing the number of ventilation grilles in the vertical direction can make the leaked hydrogen diffuse out of the cabin more quickly and effectively. Study reveals the hydrogen leakage and diffusion process in the high voltage cabin. When hydrogen leakage occurs inside the high voltage cabin, the leaked hydrogen diffuses to the top along both sides of the cabin, and accumulates at the highest point on the left and right sides. The hydrogen concentration sensor should be placed at the highest point on the left and right sides of the cabin.

Key words: fuel cell bus    hydrogen safety    leakage and diffusion    ventilation grille    numerical simulation
收稿日期: 2019-05-27 出版日期: 2020-03-10
CLC:  U 473.25  
基金资助: 国家重点研发计划资助项目(2018YFB0105301)
通讯作者: 邓亚东     E-mail: yabo94@163.com;dengyadong@sina.com
作者简介: 余亚波(1994—),男,硕士生,从事氢安全研究. orcid.org/0000-0002-3634-4599. E-mail: yabo94@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
余亚波
邓亚东

引用本文:

余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.

Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.020        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/381

图 1  氢气泄漏事故后果分析图
图 2  燃料电池客车高压舱布置图
图 3  高压舱简化模型
图 4  计算域及网格示意图
图 5  欠膨胀氢气射流激波结构图
图 6  氢气射流中心线上的摩尔分数
图 7  氢气射流径向上的摩尔分数
布置方式 数量 尺寸/mm S/m2
1 4×2 20×400 0.064
2 6×2 20×400 0.096
3 8×2 20×400 0.128
4 4×2 20×600 0.096
5 4×2 20×800 0.128
表 1  通风格栅参数
图 8  通风格栅布置方式示意图
图 9  高压舱内氢气摩尔分数与3种通风面积的关系
图 10  高压舱内氢气摩尔分数与通风格栅布置方式的关系
图 11  高压舱内氢气摩尔分数与泄漏时长的关系
图 12  采用布置方式2时高压舱内部氢气摩尔分数分布图
1 冯文, 王淑娟, 倪维斗, 等 氢能的安全性和燃料电池汽车的氢安全问题[J]. 太阳能学报, 2003, 24 (5): 677- 682
FENG Wen, WANG Shu-juan, NI Wei-dou, et al The safety of hydrogen energy and fuel cell vehicles[J]. Journal of Solar Energy, 2003, 24 (5): 677- 682
doi: 10.3321/j.issn:0254-0096.2003.05.020
2 刘延雷, 秦永泉, 盛水平, 等 燃料车内氢气泄漏扩散数值模拟研究[J]. 中国安全生产科学技术, 2009, 5 (5): 5- 8
LIU Yan-lei, QIN Yong-quan, SHENG Shui-ping, et al Numerical investigation on dispersion of hydrogen in hydrogen powered automobiles[J]. Journal of Safety Science and Technology, 2009, 5 (5): 5- 8
3 李云浩, 喻源, 张庆武 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17 (5): 1884- 1889
LI Yun-hao, YU Yuan, ZHANG Qing-wu Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17 (5): 1884- 1889
4 卢明, 徐晔, 肖学章 室内氢气泄漏扩散的数值模拟[J]. 中国安全生产科学技术, 2011, 7 (8): 29- 33
LU Ming, XU Ye, XIAO Xue-zhang Numerical simulation on the leakage and diffusion of hydrogen in indoor environment[J]. Journal of Safety Science and Technology, 2011, 7 (8): 29- 33
5 李峰, 袁裕鹏, 严新平, 等 燃料电池船舶舱内氢气泄漏数值模拟研究[J]. 交通信息与安全, 2017, 35 (6): 60- 66
LI Feng, YUAN Yu-peng, YAN Xin-ping, et al A study on numerical simulation of hydrogen leakage in cabin of fuel cell ship[J]. Journal of Transportation Information and Safety, 2017, 35 (6): 60- 66
doi: 10.3963/j.issn.1674-4861.2017.06.009
6 郑津洋, 刘延雷, 徐平, 等 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报: 工学版, 2008, 42 (12): 2177- 2180
ZHENG Jin-yang, LIU Yan-lei, XU Ping Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (12): 2177- 2180
7 李静媛, 赵永志, 郑津洋 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报: 工学版, 2015, 49 (7): 1389- 1394
LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (7): 1389- 1394
8 李雪芳, 何倩, 柯道友, 等 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报: 自然科学版, 2018, 58 (12): 1095- 1100
LI Xue-fang, HE Qian, CHRISTOPHER D M, et al Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University: Science and Technology, 2018, 58 (12): 1095- 1100
9 李雪芳, 王俞杰, 罗峰, 等 欠膨胀氢气射流激波结构数值模拟研究[J]. 工程热物理学报, 2018, 39 (4): 880- 886
LI Xue-fang, WANG Yu-jie, LUO Feng, et al Numerical simulation of shock structures of under-expanded hydrogen jet[J]. Journal of Engineering Thermophysics, 2018, 39 (4): 880- 886
10 CHOI J, HUR N, KANG S, et al A CFD simulation of hydrogen dispersion for the hydrogen leakage from afuel cell vehicle in anunderground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38 (19): 8084- 8091
doi: 10.1016/j.ijhydene.2013.02.018
11 HAJJI Y, BOUTERAA M, ELCAFSI A, et al Natural ventilation of hydrogen during a leak in a residential garage[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 810- 818
doi: 10.1016/j.rser.2015.05.060
12 MATSUURA K Effects of the geometrical configuration of a ventilation system on leaking hydrogen dispersion and accumulation[J]. International Journal of Hydrogen Energy, 2009, 34 (24): 9869- 9878
doi: 10.1016/j.ijhydene.2009.09.044
13 BIE H Y, HAO Z R Simulation analysis on the risk of hydrogen releases and combustion in subsea tunnels[J]. International Journal of Hydrogen Energy, 2017, 42 (11): 7617- 7624
doi: 10.1016/j.ijhydene.2016.05.263
14 HAN U, OH J, LEE H Safety investigation of hydrogen charging platform package with CFD simulation[J]. International Journal of Hydrogen Energy, 2018, 43 (29): 13687- 13699
doi: 10.1016/j.ijhydene.2018.05.116
15 刘诗飞, 詹予忠. 重大危险源辨识及危害后果分析[M]. 北京: 化学工业出版社, 2004: 57-58.
16 余照. 氢泄漏与扩散数值仿真研究[D]. 长沙: 国防科学技术大学, 2008.
YU Zhao. Numerical simulation of leak and diffusion of hydrogen [D]. Changsha: National University of Defense Technology, 2008.
17 GUPTA S, BRINSTER J, STUDER E, et al Hydrogen related risks within a private garage: concentration measurements in a realistic full scale experimental facility[J]. International Journal of Hydrogen Energy, 2009, 34 (14): 5902- 5911
doi: 10.1016/j.ijhydene.2009.03.026
18 董玉华, 周敬恩, 高惠临, 等 长输管道稳态气体泄漏率的计算[J]. 油气储运, 2002, 21 (8): 11- 15
DONG Yu-hua, ZHOU Jing-en, GAO Hui-lin, et al Estimation of steady state gas release flow rate in long distance pipeline[J]. Oil and Gas Storage and Transportation, 2002, 21 (8): 11- 15
doi: 10.3969/j.issn.1000-8241-D.2002.08.004
19 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015.
LI Xue-fang. Dispersion of unintended subsonic and supersonic hydrogen releases fromhydrogen storage systems [D]. Beijing: Tsinghua University, 2015.
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[4] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[5] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[10] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[11] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[12] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[13] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[14] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[15] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.