Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 455-461    DOI: 10.3785/j.issn.1008-973X.2021.03.005
机械工程     
尾随半挂车队列行进的轿车燃油经济性研究
于梦婷1,2,3(),汪怡平1,2,3,苏楚奇1,2,3,*(),陶琦1,2,3,史建鹏4
1. 武汉理工大学 现代汽车零部件技术湖北省重点实验室,湖北 武汉 430070
2. 武汉理工大学 汽车零部件技术湖北省协同创新中心,湖北 武汉 430070
3. 武汉理工大学 湖北省新能源与智能网联车工程技术研究中心,湖北 武汉 430070
4. 东风汽车集团有限公司技术中心,湖北 武汉 430070
Research on fuel economy of car trailing semitrailer in platoon
Meng-ting YU1,2,3(),Ying-ping WANG1,2,3,Chu-qi SU1,2,3,*(),Qi TAO1,2,3,Jian-peng SHI4
1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
3. Hubei Research Center for New Energy and Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
4. Dongfeng Motor Corporation Technical Center, 430070 Wuhan, China
 全文: PDF(1184 KB)   HTML
摘要:

为了精确研究队列中汽车的燃油消耗情况,以一辆轿车尾随一辆半挂车为例,对轿车队列尾随过程进行数值模拟,得到尾随过程中轿车的气动阻力系数. 建立轿车散热器-风扇一维散热模型,得到轿车风扇的功率,利用汽车行驶方程,推导得到基于气动阻力系数及风扇功率的车辆净燃油节省率公式,研究队列中尾随轿车的燃油经济性. 结果表明:发动机舱散热对尾随轿车的燃油消耗有一定影响,且间距越大影响越大;轿车的净燃油节省率随车间距的增大而减小,在间距为0.5至1.0倍轿车车长内时,轿车的净燃油节省率对间距变化最敏感.

关键词: 汽车空气动力学队列行驶燃油消耗数值模拟发动机散热    
Abstract:

A car trailing a semitrailer was taken to research on the fuel consumption of the vehicles in platoon more accurately. The aerodynamic drag coefficient of the car in the trailing process was obtained by numerical simulation. By building the one-dimensional model of radiator and fan to simulate the heat dissipation of the car, the power of the fan was obtained. The formula of vehicle net fuel saving rate based on aerodynamic drag coefficient and fan power was derived by using vehicle driving equation, and the fuel economy of the trailing car was calculated and analyzed. Results show that the engine compartment heat dissipation has an effect on the fuel consumption of the trailing car in platoon, and the effect increases with the increase of the distance between the car and the semitrailer. The net fuel consumption reduction ratio of the trailing car decreases with the increase of the distance between two vehicles. When the distance is 0.5 to 1.0 times the length of car, the net fuel consumption reduction ratio of the car is most sensitive to the change of distance.

Key words: automobile aerodynamics    platoon driving    fuel consumption    numerical simulation    heat dissipation of engine
收稿日期: 2020-03-04 出版日期: 2021-04-25
CLC:  U 461.8  
基金资助: 国家自然科学基金资助项目(51775395);国家重点研发计划资助项目(2018YFB0105301)
通讯作者: 苏楚奇     E-mail: yumengting1108@qq.com;suchuqi@whut.edu.cn
作者简介: 于梦婷(1995—),女,硕士生,从事汽车热管理研究. orcid.org/0000-0001-9193-1481. E-mail: yumengting1108@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
于梦婷
汪怡平
苏楚奇
陶琦
史建鹏

引用本文:

于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.

Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.005        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/455

图 1  半挂车、轿车模型示意图
车型 长/mm 宽/mm 高/mm
半挂车 16700 2430 3963
轿车 5010 2025 1460
表 1  半挂车、轿车模型基本参数
图 2  y=0截面的网格示意图
图 3  轿车、半挂车气动阻力系数变化曲线
图 4  轿车单车行驶及D=0.5l时队列行驶压强分布图
图 5  不同间距下轿车散热器前、后压强及压差
图 6  轿车散热器进气速度的变化曲线
图 7  轿车散热器散热量的变化曲线
主要参数 单位 参数值
散热器芯体规格 mm 500×310×39
扁管数量 76
单根扁管内通道数量 2
扁管内通道宽 mm 19
扁管内通道高 mm 1.5
扁管壁厚 mm 0.1
翅片高 mm 4.8
翅片间距 mm 1.0
翅片厚 mm 0.1
材料导热系数 W·m?1·K?1 237
表 2  轿车散热器主要参数
图 8  轿车散热器­风扇一维仿真模型
图 9  轿车散热器冷却空气需求量的变化曲线
图 10  轿车风扇增加功率的变化曲线
图 11  轿车因气动阻力系数降低而节省的功率的变化曲线
图 12  轿车只燃油消耗节省率变化曲线
1 JACUZZI E, GRANLUND K Passive flow control for drag reduction in vehicle platoons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 104- 117
doi: 10.1016/j.jweia.2019.03.001
2 MAHMOUDABADBOZCHELOU M, RABIEI N, BAZARGAN M Numerical and experimental investigation of the optimization of vehicle speed and inter-vehicle distance in an automated highway car platoon to minimize fuel consumption[J]. SAE International Journal of Connected and Automated Vehicles, 2018, 1 (1): 3- 11
doi: 10.4271/12-01-01-0001
3 傅立敏, 贺宝琴, 吴允柱, 等 队列行驶车辆间距对气动特性的影响[J]. 汽车工程, 2007, 29 (5): 365- 400
FU Li-min, HE Bao-qin, WU Yun-zhu, et al The influence of inter-vehicle distance on aerodynamic characteristic of vehicle platoon[J]. Automotive Engineering, 2007, 29 (5): 365- 400
doi: 10.3321/j.issn:1000-680X.2007.05.001
4 贺宝琴. 汽车队列行驶的气动特性研究[D]. 长春: 吉林大学, 2009: 75-77.
HE Bao-qin. Research on automotive characteristic of platoon [D]. Changchun: Jilin University, 2009: 75-77.
5 傅立敏, 吴允柱, 贺宝琴 队列行驶车辆的空气动力特性[J]. 吉林大学学报: 工学版, 2006, 36 (6): 871- 875
FU Li-min, WU Yun-zhu, HE Bao-qin Aerodynamic characteristic of vehicle platoon[J]. Journal of Jilin University: Engineeringand Technology Edition, 2006, 36 (6): 871- 875
6 ROBERTSON F H, BOURRIEZ F, HE M, et al An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon[J]. Journal of Wind Engineering andIndustrial Aerodynamics, 2019, 193: 103966
doi: 10.1016/j.jweia.2019.103966
7 ALTINISIK A, YEMENICI O, UMUR H Aerodynamic analysis of a passenger car at yaw angle and two-vehicle platoon[J]. Journal of Fluids Engineering-Transactions of the ASME, 2015, 137 (12): 121107
doi: 10.1115/1.4030869
8 SCHITO P, BRAGHIN F Numerical and experimental investigation on vehicles in platoon[J]. SAE International Journal of Commercial Vehicles, 2012, 5 (1): 63- 71
doi: 10.4271/2012-01-0175
9 TSUGAWA S, KATO S, AOKI K. An automated truck platoon for energy saving [C]// 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 4109-4114.
10 LAMMERT M P, DURAN A, DIEZ J, et al Effect of platooning on fuel consumption of class 8 vehicles over a range of speeds, following distances, and mass[J]. SAE International Journal of Commercial Vehicles, 2014, 7 (2): 626- 639
doi: 10.4271/2014-01-2438
11 BONNET C, FRITZ H. Fuel consumption reduction in a platoon experimental results with two electronically coupled trucks at close spacing [C]// 2000 Future Transportation Technology Conference and Exposition. Costa Mesa: SAE, 2000.
12 谷正气, 龚旭, 贾新建, 等 轿车尾随集装箱车外流场计算仿真分析[J]. 湖南大学学报: 自然科学版, 2009, 36 (1): 30- 34
GU Zheng-qi, GONG Xu, JIA Xin-jian, et al Numerical simulation analysis of the external flow field of automotive trailing a container truck[J]. Journal of Hunan University: Natural Sciences, 2009, 36 (1): 30- 34
13 王靖宇, 刘畅, 李胜, 等 队列行驶三辆汽车外流场的数值模拟[J]. 重庆交通大学学报: 自然科学版, 2007, 26 (5): 138- 141
WANG Jing-yu, LIU Chang, LI Sheng, et al Numerical simulation of flow field around three-car platoon[J]. Journal of Chongqing Jiaotong University: Natural Sciences, 2007, 26 (5): 138- 141
14 AZIM A, GAWAD A. A flow visualization study of the aerodynamic interference between passenger cars [C]// SAE 2000 World Congress and Exhibition. Detroit: SAE, 2000: 1-12.
15 ELLIS M, GARGOLOFF J I, SENGUPTA R Aerodynamic drag and engine cooling effects on class 8 trucks in platooning configurations[J]. SAE International Journal of Commercial Vehicles, 2015, 8 (2): 732- 739
doi: 10.4271/2015-01-2896
16 袁志群, 谷正气 基于多孔介质材料和仿生设计的汽车阻流板减阻机理[J]. 中国机械工程, 2019, 30 (7): 777- 785
QUAN Zhi-qun, GU Zheng-qi Aerodynamic drag reduction mechanism of automobile spoiler based on porous media and bionic design[J]. China Mechanical Engineering, 2019, 30 (7): 777- 785
doi: 10.3969/j.issn.1004-132X.2019.07.004
17 NIMTAN R, DOOST A K, MADANI N Simulation of air flow under the hood of a passenger car using computational fluid dynamics[J]. Research Journal of Applied Science, Engineering and Technology, 2013, 6 (24): 4583- 4594
doi: 10.19026/rjaset.6.3472
18 宋昕. 汽车气动升力及其对直线行驶能力影响的研究 [D]. 长沙: 湖南大学, 2012: 59-60.
SONG Xin. Research on automotive aerodynamic lift and its effects on straight-line driving ability [D]. Changsha: Hunan University, 2012: 59-60.
19 傅立敏. 汽车空气动力学数值计算[M]. 北京: 北京理工大学出版社, 2001.
20 余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009.
[1] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[2] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[3] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[4] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[10] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[11] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[12] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[13] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[14] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[15] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.