Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 338-347    DOI: 10.3785/j.issn.1008-973X.2021.02.014
土木工程、交通工程     
考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性
曾超峰(),王硕,袁志成,薛秀丽
湖南科技大学 岩土工程稳定控制与健康监测湖南省重点实验室,湖南 湘潭 411201
Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure
Chao-feng ZENG(),Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China
 全文: PDF(1642 KB)   HTML
摘要:

依托天津某地铁车站基坑实测资料开展一系列数值模拟研究,考虑邻近结构阻隔影响,探讨在坑外有/无地下结构及既有地下结构与基坑不同间距条件下开挖前降水引发的围护结构及坑外土体变形特性,通过对比各工况下基坑围挡与坑外土体变形模式、最大围挡侧移与最大地面沉降发展规律、墙后地表沉陷与基坑围挡侧移的面积关系等,揭示邻近结构对开挖前抽水引发基坑变形的影响机理. 研究表明,坑外地下结构的存在对地层运动发展有一定阻隔作用,且地下结构与基坑间间距越小,这种阻隔效应越明显;地下结构对其后方地层变形具有牵引效应,导致地下结构后方出现明显沉降槽,但随着地下结构与基坑间间距的增大,牵引效应不断减弱. 阻隔、牵引效应发挥的临界值分别为1倍、2倍的目标降水深度;当地下结构与基坑间间距处于相应临界值以内时,在基坑设计中应考虑阻隔与牵引效应的影响以得到更合理的支护与施工监测方案.

关键词: 基坑变形开挖前降水邻近结构阻隔效应牵引效应数值模拟    
Abstract:

A series of numerical simulations were carried out on the basis of a practical dewatering test in an excavation for metro station in Tianjin, to investigate the characteristics of wall and soil movement induced by pre-excavation dewatering considering the blocking effect of adjacent structure. The effect of the spacing between the existing structure and the excavation on the ground response was revealed. By comparing the deformation modes of retaining wall and soil, the development of the maximum wall and soil deformations and the relation between the soil loss areas induced by wall deflection and soil surface settlement, the influence mechanism of the adjacent structure on the dewatering-induced foundation pit deformation was revealed. Results show that the existence of surrounding underground structure limits the development of the ground movement, and a more apparent limiting effect would appear in the case with greater spacing between the underground structure and the excavation. In the meantime, the underground structure has a pulling effect on the ground behind it, leading to obvious surface subsidence behind the underground structure, but this pulling effect weakens continually with the increase of the distance between the underground structure and the excavation. In addition, the critical values of distance between the underground structure and the excavation were obtained to estimate the blocking effect and pulling effect, which were one and two times of the target dewatering depth. When distance between the underground structure and the excavation is within the corresponding critical values, the blocking effect and pulling effect should be considered during foundation pit design to yield more reasonable support scheme.

Key words: foundation pit deformation    pre-excavation dewatering    adjacent structure    blocking effect    pulling effect    numerical simulation
收稿日期: 2020-09-16 出版日期: 2021-03-09
CLC:  TU 46+3  
基金资助: 国家自然科学基金资助项目(51708206,51978261);中国博士后科学基金资助项目(2019T120797);湖南省自然科学基金资助项目(2020JJ5193,2020JJ4300);湖南省教育厅资助项目(20A190,17B097)
作者简介: 曾超峰(1987—),男,副教授,博导,从事岩土工程科研与教学工作. orcid.org/0000-0002-0917-9815. E-mail: cfzeng@hnust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曾超峰
王硕
袁志成
薛秀丽

引用本文:

曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.

Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.014        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/338

图 1  地铁车站基坑降水井及变形监测点平面布置
土层性质 H /m γ /(kN?m?3 K0 w /% e Es /MPa
粉质黏土 5.5 19.35 0.49 29.9 0.811 4.00
黏质粉土 11.0 19.30 0.43 26.5 0.792 8.26
粉质黏土 19.0 20.10 0.50 26.4 0.696 5.80
砂质粉土 24.0 20.15 0.42 21.9 0.640 8.71
黏土 27.0 19.75 0.55 30.4 0.764 5.98
砂质粉土 33.0 20.65 0.35 20.2 0.583 8.29
粉质黏土 37.0 20.50 0.39 22.4 0.611 7.26
粉砂 42.0 20.05 0.30 18.2 0.585 10.50
粉质黏土 50.0 19.30 0.39 23.8 0.676 6.20
表 1  土层分布及主要土性参数
图 2  围护结构侧移实测值
图 3  模拟实际基坑数值模型网格图
土性 H /m KH /(m?d?1 KV /(m?d?1 M κ λ
粉质黏土 5.5 0.1 0.1 0.979 0.0065 0.0553
黏质粉土 11.0 0.5 0.5 1.192 0.0036 0.0312
粉质黏土 19.0 5.0×10?4 1.0×10?4 0.979 0.0052 0.0445
砂质粉土 24.0 1.0 1.0 1.202 0.0034 0.0293
黏土 27.0 5.0×10?5 1.0×10?5 0.800 0.0046 0.0397
砂质粉土 33.0 1.0 0.7 1.202 0.0033 0.0283
粉质黏土 37.0 5.0×10?4 3.0×10?4 0.900 0.0037 0.0320
粉砂 42.0 2.5 1.5 1.382 0.0022 0.0191
粉质黏土 50.0 5.0×10?4 2.0×10?4 0.900 0.0035 0.0305
表 2  数值模型中土层分布及物理力学参数
图 4  坑外有/无地下结构时数值模型网格图
参数 取值/m
1)注:∞表示坑外无地下结构的工况
Hd 5.5、11.0、16.0、19.0、21.5
D 5、10、15、20、40、∞1)
表 3  模型计算工况与参数取值
图 5  C3测斜孔处侧移实测值与计算值对比
图 6  坑外有/无地下结构时开挖前降水引发基坑变形计算曲线
图 7  开挖前降水引发基坑变形时程曲线
图 8  最大基坑变形随地下结构与基坑间距变化
图 9  地下结构后方最大沉降随地下结构与基坑间距变化
图 10  最大围护结构侧移与最大地面沉降的关系
图 11  最大基坑变形增量随地下结构与基坑间距变化
图 12  围护结构侧移面积及地面沉陷面积随地下结构与基坑间距变化
图 13  土体损失面积求解示意图
图 14  坑外地面沉陷面积与围护结构侧移面积关系
1 曾超峰, 王硕, 宋伟炜, 等.内隔墙对开挖前抽水引发软土区地铁深基坑变形的控制效果[J/OL]. 岩石力学与工程学报. https://doi.org/10.13722/j.cnki.jrme.2020.0900.
ZENG Chao-feng, WANG Shuo, SONG Wei-wei, et al. Control effect of cross wall on the metro foundation pit deformation induced by pre-excavation dewatering in soft soil [J/OL]. Chinese Journal of Rock Mechanics and Engineering. https://doi.org/10.13722/j.cnki.jrme.2020.0900.
2 程康, 徐日庆, 林存刚, 等 既有单桩在邻近基坑开挖下的水平向响应简化分析[J]. 浙江大学学报:工学版, 2020, 54 (1): 91- 101
CHENG Kang, XU Ri-qing, LIN Cun-gang, et al Simplified analysis method for evaluating horizontal deformation of single pile due to adjace-int foundation pit excavation[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 91- 101
3 陈仁朋, 孟凡衍, 李忠超, 等 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报:工学版, 2016, 50 (5): 856- 863
CHEN Ren-peng, MENG Fan-yan, LI Zhong-chao, et al Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (5): 856- 863
4 刘念武, 龚晓南, 楼春晖 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报:工学版, 2014, 48 (7): 1141- 1147
LIU Nian-wu, GONG Xiao-nan, LOU Chun-hui Deformation behavior of nearby facilities analysis induced by excavation in soft clay[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1141- 1147
5 应宏伟, 李涛, 王文芳 基于三维数值模拟的深基坑隔断墙优化设计[J]. 岩土力学, 2012, 33 (1): 220- 226
YING Hong-wei, LI Tao, WANG Wen-fang Optimization design of partition wall in deep excavations based on 3D numerical simulation[J]. Rock and Soil Mechanics, 2012, 33 (1): 220- 226
doi: 10.3969/j.issn.1000-7598.2012.01.035
6 徐长节, 曾晓鑫, 戚晓锴, 等 拱形双排隔离桩位置对既有隧道的影响分析[J]. 铁道科学与工程学报, 2018, 15 (6): 1501- 1508
XU Chang-jie, ZENG Xiao-xin, QI Xiao-kai, et al Analysis of influence of position of arch double row isolated pile on existing tunnel[J]. Journal of Railway Science and Engineering, 2018, 15 (6): 1501- 1508
doi: 10.3969/j.issn.1672-7029.2018.06.019
7 谢康和, 柳崇敏, 应宏伟, 等 成层土中基坑开挖降水引起的地表沉降分析[J]. 浙江大学学报:工学版, 2002, (3): 9- 12
XIE Kang-he, LIU Chong-min, YING hong-wei, et al Analysis of settlement induced by dewatering during excavation in layered soil[J]. Journal of Zhejiang University: Engineering Science, 2002, (3): 9- 12
8 吴意谦, 朱彦鹏 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报:工学版, 2016, 50 (11): 2188- 2197
WU Yi-qian, ZHU Yan-peng Improved calculationof settlement due to dewatering of foundation pits in phreatic aquifer[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2188- 2197
9 曾超峰, 郑刚, 薛秀丽 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39 (6): 1012- 1021
ZENG Chao-feng, ZHENG Gang, XUE Xiu-li Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (6): 1012- 1021
10 WU Y X, SHEN S L, XU Y S Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: field observations[J]. Canadian Geotechnical Journal, 2015, 52 (10): 1526- 1538
doi: 10.1139/cgj-2014-0285
11 郑刚, 曾超峰 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35 (12): 2153- 2163
ZHENG Gang, ZENG Chao-feng Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (12): 2153- 2163
12 郑刚, 赵悦镔, 程雪松, 等 复杂地层中基坑降水引发的水位及沉降分析与控制对策[J]. 土木工程学报, 2019, 52 (Suppl.1): 135- 142
Zheng Gang, Zhao Yue-bin, Cheng Xue-song, et al Strategy and analysis of the settlement and deformation caused by dewatering under complicated geological condition[J]. China Civil Engineering Journal, 2019, 52 (Suppl.1): 135- 142
13 TAN Y, WANG D, LU Y, et al Excavation of middle huai-hai road station of shanghai metro line 13: challenges, risks, countermeasures, and performance assessment[J]. Practice Periodical on Structural Design and Construction, 2017, 22 (3): 05017003
doi: 10.1061/(ASCE)SC.1943-5576.0000320
14 ZHENG G, ZENG C F, DIAO Y, et al Test and numerical research on wall deflections induced by pre-excavation dewatering[J]. Computers and Geotechnics, 2014, 62: 244- 256
doi: 10.1016/j.compgeo.2014.08.005
15 WANG J X, LIU X T, LIU S L, et al Physical model test of transparent soil on coupling effect of cut-off wall and pumpingwells during foundation pit dewatering[J]. Acta Geotechnica, 2019, 14: 141- 162
doi: 10.1007/s11440-018-0649-2
16 许烨霜, 沈水龙, 马磊 地下构筑物对地下水渗流的阻挡效应[J]. 浙江大学学报:工学版, 2010, 44 (10): 1902- 1906
XU Ye-shuang, SHEN Shui-long, MA Lei Cutoff effect of groundwater seepage due to existence ofunderground structure[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1902- 1906
17 LIAO S M, WEI S F, SHEN S L Structural responses of existing metro stations to adjacent deep excavations in Suzhou, China[J]. Journal of Performance of Constructed Facilities, 2016, 30 (4): 04015089
doi: 10.1061/(ASCE)CF.1943-5509.0000845
18 TAN Y, LI X, KANG Z, et al Zoned excavation ofan oversized pit close to an existing metro line instiff clay: case study[J]. Journal of Performance of Constructed Facilities, 2016, 30 (4): 04014158
19 郭海峰, 姚爱军, 张剑涛, 等 建筑施工荷载引起邻近地铁隧道变形机理研究[J]. 地下空间与工程学报, 2019, 15 (Suppl.1): 341- 353
GUO Hai-feng, YAO Ai-jun, ZHANG Jian-tao, et al Study on the influence of construction loading onthe deformation of adjacent subway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (Suppl.1): 341- 353
20 ZENG C F, ZHENG G, ZHOU X F, et al Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths[J]. Computers and Geotechnics, 2019, 115: 103169
doi: 10.1016/j.compgeo.2019.103169
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[3] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[4] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[10] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[11] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[12] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[13] 李卓峰, 林伟岸, 朱瑶宏, 边学成, 叶俊能, 高飞, 陈云敏. 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1475-1481.
[14] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[15] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.