Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2120-2127    DOI: 10.3785/j.issn.1008-973X.2020.11.007
土木工程     
运营充水状态高密度聚乙烯管的爆破振动响应特性
张玉琦1(),蒋楠1,2,*(),贾永胜2,3,周传波1,罗学东1,吴廷尧1
1. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
2. 工程爆破湖北省重点实验室,湖北 武汉 430024
3. 武汉爆破有限公司,湖北 武汉 430024
Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state
Yu-qi ZHANG1(),Nan JIANG1,2,*(),Yong-sheng JIA2,3,Chuan-bo ZHOU1,Xue-dong LUO1,Ting-yao WU1
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Hubei Key Laboratory of Engineering Blasting, Wuhan 430024, China
3. Wuhan Explosion and Blasting Co. Ltd, Wuhan 430024, China
 全文: PDF(1355 KB)   HTML
摘要:

结合武汉市管道预埋地层特点,通过全尺度预埋高密度聚乙烯(HDPE)管道现场爆破试验,分析不同工况条件下(不同药量、不同爆破心距)无压状态管道爆破振动速度及动应变分布特征;结合LSDYNA动力有限元分析方法,通过现场试验数据的对比验证计算模型及参数的可靠性;分析爆破振动荷载作用下不同运营状态(即不同充水水位高度)HDPE管道动力响应特性;结合管道运营状态环向容许应力控制准则,提出HDPE波纹管爆破振动速度安全控制标准. 研究结果表明:当HDPE管道受到爆破振动影响时,环向应变最大;管道合振速与等效应力随管内水位高度的增加而降低,且管道同一截面处迎爆侧的合振速和等效应力大于背爆侧,最大空管合振速为18.56 cm/s,最大等效应力为0.912 MPa;管道振速最大位置处X方向振动速度与主频随水位高度升高而降低,YZ方向振动速度与主频随水位高度的升高而增加;通过米塞斯屈服强度准备得到的管道运营状态安全控制速度为25.79 cm/s.

关键词: 爆破振动高密度聚乙烯(HDPE)管充水管道现场试验数值模拟控制速度    
Abstract:

The blasting vibration speed and dynamic strain distribution characteristics of the pipeline under no pressure and different working conditions (different doses and different blasting distances) were analyzed through a full-scale embedded high-density polyethylene (HDPE) pipeline field blasting test, combined with the characteristics of the strata in the pipeline pre-burial site in Wuhan. The reliability of the calculation model and the parameters was verified by comparing with the field test data, combined with LSDYNA dynamic finite element analysis method. The dynamic response characteristics of HDPE pipelines with different operating conditions (different filling water level heights) under blasting vibration loads were analyzed. A safety control standard for the HDPE corrugated pipe blasting vibration speed was proposed, combined with the hoop allowable stress control criteria for pipeline operating conditions. Results indicate that the circumferential strain reaches the largest value when the HDPE pipeline is affected by blasting vibration. The combined vibration and the equivalent stress of the pipeline decrease with the increase of the water level in the pipe, and the combined vibration speed and the equivalent stress of the front explosion side of the pipeline are greater than those of the back explosion side at the same section. The maximum combined vibration of an empty pipe was 18.56 cm/s, and the equivalent stress was 0.912 MPa. The vibration speed and the main frequency of the X-direction at the dangerous section of the pipeline decrease as the water level rises, and these of the Y and Z directions increase as the water level rises. The safety control speed of the pipeline operating state obtained through the preparation of Mises yield strength was 25.79 cm/s.

Key words: blasting vibration    high-density polyethylene (HDPE) pipe    water filling pipe    field test    numerical simulation    control speed
收稿日期: 2019-12-02 出版日期: 2020-12-15
CLC:  TU 992  
基金资助: 国家自然科学基金资助项目(41807265、41972286);爆破工程湖北省重点实验室开放基金重点资助项目(HKLBEF202001)
通讯作者: 蒋楠     E-mail: yuqiz@cug.edu.cn;happyjohn@foxmail.com
作者简介: 张玉琦(1995—),男,硕士生,从事地下工程以及岩石爆破研究. orcid.org/0000-0002-9107-9660. E-mail: yuqiz@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张玉琦
蒋楠
贾永胜
周传波
罗学东
吴廷尧

引用本文:

张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.

Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2120

图 1  爆破试验所用HDPE管道尺寸示意图
工况 炸药埋深/m 炸药量/kg 水平距离/m
1 6.5 8.0 25
2 6.5 8.0 20
3 6.5 8.0 15
4 6.5 8.0 10
5 4.0 8.0 25
6 4.0 8.0 20
7 4.0 8.0 15
8 4.0 8.0 10
9 4.0 9.6 5
表 1  爆破试验的工况参数
图 2  爆破试验及部分炮孔示意图
图 3  振动速度测点示意图
图 4  动态应变测点示意图
监测点 现场试验 数值模拟 EVR /%
vX /(cm·s?1) vY /(cm·s?1) vZ /(cm·s?1) vR /(cm·s?1) vX /(cm·s?1) vY /(cm·s?1) vZ /(cm·s?1) vR /(cm·s?1)
D1 18.99 4.12 2.47 19.58 15.44 7.25 3.51 17.41 ?11.08
D2 7.25 2.67 7.63 10.86 9.34 5.65 3.23 11.38 4.85
D3 10.39 5.33 3.24 12.12 11.60 5.88 3.11 13.37 10.32
D4 17.81 8.66 3.91 20.19 16.43 6.42 3.55 17.99 ?10.87
D5 8.51 5.12 3.41 10.50 11.55 2.03 2.89 12.08 14.98
D6 13.34 4.51 5.73 15.20 10.50 8.44 4.23 14.12 ?7.11
D7 15.19 4.95 4.30 16.54 13.20 6.11 6.33 15.86 ?4.11
表 2  振动速度的现场试验与数值模拟结果对比
图 5  爆破试验工况9测点2轴向与环向动应变
图 6  管道爆破试验整体数值模型及网格划分
材料 ρ /(g·m?3) E /GPa G /GPa μ c /MPa φ /(°) σt /MPa
管道 0.936 0.834 9 ? 0.46 ? ? 31.600
粉质黏土 1.980 0.039 0 4.3 0.35 0.035 15 0.028
砂岩 2.680 52.000 0 11.2 0.25 5.500 43 2.580
表 3  管道、粉质黏土与砂岩材料模型参数表
ρw/ (g·cm?3) c0 / (m·s?1) S1 S2 S3 γ0
1.0 1 500 2.560 0 1.986 0 1.226 8 0.5
表 4  水材料模型参数
参数 ρe /(g·cm?3) A /GPa B /GPa R1 R2 ω E0 /GPa V /cm3
数值 1.25 214.0 18.2 4.2 0.9 0.15 4.19 1
表 5  爆轰产物参数表
图 7  半水和满水工况网格划分
H/cm vX /(cm·s?1) fX/Hz vY /(cm·s?1) fY /Hz vZ /(cm·s?1) fZ /Hz vR /(cm·s?1)
0 18.35 72 6.03 31 2.21 37 19.44
20 17.33 61 6.91 45 3.02 58 18.90
40 15.83 52 8.52 68 3.41 69 18.30
60 14.37 38 9.41 87 3.99 82 17.63
80 12.21 26 10.21 103 4.33 99 16.49
表 6  5种数值模拟工况下危险截面振动速度与主频
图 8  振动速度与管道水位高度拟合图
图 9  危险截面各点振动速度
图 10  危险截面各点等效应力
图 11  等效应力与峰值合振速拟合图
图 12  应力方向示意图
1 GIANNAROS E, KOTZAKOLIOS T, KOSTOPOULOS V Blast response of composite pipeline structure using finite element techniques[J]. Journal of Composite Materials, 2016, 50 (25): 3459- 3476
doi: 10.1177/0021998315618768
2 WON J H, KIM M K, KIM G, et al Blast-induced dynamic response on the interface of a multilayered pipeline[J]. Structure and Infrastructure Engineering, 2014, 10 (1): 80- 92
doi: 10.1080/15732479.2012.699532
3 HA D, ABDOUN T H, O’ROURKE M J, et al Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134 (10): 1501- 1515
doi: 10.1061/(ASCE)1090-0241(2008)134:10(1501)
4 ABDOUN T H, HA D, MICHAEL J, et al Factors influencing the behavior of buried pipelines subjected to earthquake faulting[J]. Soil Dynamics and Earthquake Engineering, 2009, 29 (3): 415- 427
doi: 10.1016/j.soildyn.2008.04.006
5 王海涛, 金慧, 贾金青, 等 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 3332- 3339
WANG Hai-tao, JIN Hui, JIA Jin-qing, et al Model test study on the influence of subway tunnel drilling and blasting construction on adjacent buried pipelines[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 3332- 3339
6 朱斌, 蒋楠, 贾永胜, 等 下穿燃气管道爆破振动效应现场试验研究[J]. 岩石力学与工程学报, 2019, 38 (12): 2582- 2592
ZHU Bin, JIANG Nan, JIA Yong-sheng, et al Field experiment on blasting vibration effect of underpass gas pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2582- 2592
7 夏宇磬, 蒋楠, 姚颖康, 等. 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应[J]. 爆炸与冲击, 2020, 40(4): 043302.
XIA Yu-qing, JIANG Nan, YAO Ying-kang, et al. Experiment study on dynamic response of spigot concrete pipe buried in silty clay layer subjected to blasting seismic wave [J]. Explosion and Shock Waves, 2020, 40(4): 043302.
8 钟冬望, 卢哲, 黄雄, 等 爆破荷载下埋地PE管道动力响应的试验研究[J]. 爆破, 2018, 35 (4): 1- 5
ZHONG Dong-wang, LU Zhe, HUANG Xiong, et al Experimental study on buried PE pipeline under blasting loads[J]. Blasting, 2018, 35 (4): 1- 5
doi: 10.3963/j.issn.1001-487X.2018.04.001
9 ZHANG J, ZHANG L, LIANG Z Buckling failure of a buried pipeline subjected to ground explosions[J]. Process Safety and Environmental Protection, 2018, 114: 36- 47
doi: 10.1016/j.psep.2017.11.017
10 PARVIZ M, AMINNEJAD B, FIOUZ A Numerical simulation of dynamic response of water in buried pipeline under explosion[J]. KSCE Journal of Civil Engineering, 2017, 21 (7): 1- 9
11 FRANCINI R B, BALTZ W N Blasting and construction vibrations near existing pipelines: what are the appropriate levels?[J]. Journal of Pipeline Engineering, 2009, 8 (4): 253- 262
12 JIANG N, GAO T, ZHOU C, et al Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel[J]. Tunnelling and Underground Space Technology, 2018, 81: 590- 601
doi: 10.1016/j.tust.2018.08.022
13 XIA Y, JIANG N, ZHOU C, et al Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation[J]. Engineering Failure Analysis, 2019, 104: 626- 642
doi: 10.1016/j.engfailanal.2019.06.047
14 WU K, ZHANG H, LIU X, et al Stress and strain analysis of buried PE pipelines subjected to mechanical excavation[J]. Engineering Failure Analysis, 2019, 106: 104171
doi: 10.1016/j.engfailanal.2019.104171
15 张震, 周传波, 路世伟, 等 爆破振动作用下邻近埋地混凝土管道动力响应特性[J]. 哈尔滨工业大学学报, 2017, 46 (9): 79- 84
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al Dynamic response characteristics of adjacent buried concrete pipelines under blasting vibration[J]. Journal of Harbin Institute of Technology, 2017, 46 (9): 79- 84
doi: 10.11918/j.issn.0367-6234.201611089
16 张震, 周传波, 路世伟, 等 超浅埋地铁站通道爆破暗挖地表振动传播特征[J]. 中南大学学报: 自然科学版, 2017, 48 (8): 2119- 2125
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al Characteristics of surface vibration propagation in tunnels of ultra-shallow buried subway stations[J]. Journal of Central South University: Science and Technology, 2017, 48 (8): 2119- 2125
17 贾永胜, 钟冬望, 姚颖康, 等 基坑爆破预留层对围护桩的保护作用数值分析[J]. 工程爆破, 2017, 23 (5): 1- 4
JIA Yong-sheng, ZHONG Dong-wang, YAO Ying-kang, et al Numerical analysis of the protective effect of the reserved layer of foundation pit blasting on retaining piles[J]. Engineering Blasting, 2017, 23 (5): 1- 4
doi: 10.3969/j.issn.1006-7051.2017.05.001
18 ZHONG D, GONG X, HAN F, et al Monitoring the dynamic response of a buried polyethylene pipe to a blast wave: an experimental study[J]. Applied Sciences, 2019, 9 (8): 1663
doi: 10.3390/app9081663
19 贵州省住房和城乡建设厅. 室外埋地聚乙烯(PE)给水管道工程技术规程: DBJ52T 039—2017 [S]. 贵阳: 中国建筑工业出版社, 2017: 27-35.
20 田峰, 高岩, 孙承华 动力管道的应力分析及管壁厚计算[J]. 管道技术与设备, 2000, (4): 4- 6
TIAN Feng, GAO Yan, SUN Cheng-hua Stress analysis and pipe wall thickness calculation of power pipeline[J]. Pipeline Technique and Equipment, 2000, (4): 4- 6
21 罗利, 马燕, 张永军, 等. 地基沉降作用下埋地聚乙烯管强度失效的数值模拟[J]. 建筑材料学报, 2020, 23(2): 473-478.
LUO Li, MA Yan, ZHANG Yong-jun, et al. Numerical simulation of strength failure of buried polyethylene pipes under ground settlement [J]. Journal of Building Materials, 2020, 23(2): 473-478.
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 李中南,朱海波,赵阳,罗雪,徐荣桥. 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报(工学版), 2021, 55(1): 46-54.
[4] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[5] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[6] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[7] 肖偲,王奎华,王孟波. 基于桩侧虚土桩模型的桩-桩芯土竖向动力响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1593-1603.
[8] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[9] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[10] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[11] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[12] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[13] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[14] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[15] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.