Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 569-578    DOI: 10.3785/j.issn.1008-973X.2022.03.016
土木工程、水利工程     
基于线性冲蚀公式的二维非黏性土石坝溃决模型
刘梦凡1(),吴钢锋2,*(),张科锋2,董平2,3
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙大宁波理工学院 土木建筑工程学院,浙江 宁波 315100
3. 利物浦大学 工程学院,英格兰 利物浦 L69 3BX
2D non-cohesive earthen embankment breach model based on linear erosion formula
Meng-fan LIU1(),Gang-feng WU2,*(),Ke-feng ZHANG2,Ping DONG2,3
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China
3. School of Engineering, University of Liverpool, Liverpool L69 3BX, United Kingdom
 全文: PDF(1678 KB)   HTML
摘要:

基于线性冲蚀公式建立二维非黏性土石坝溃决模型. 所建模型利用线性冲蚀公式建立床面冲刷率与水流切应力的关系以计算坝体变形,无须应用输沙率公式和求解泥沙输移方程. 与现有精细物理模型相比,所建模型更简单,计算效率更高. 利用2个不同形式的算例,验证边坡坍塌算法的有效性;将所建模型分别应用于一维和二维非黏性土石坝漫顶实验,模型计算的坝顶高程、溃口最终宽度和峰值流量等关键指标值与测量值吻合良好,表明该模型能够较为准确地模拟非黏性土石坝溃坝. 对模型关键参数进行敏感性分析,分析不同参数对计算结果的影响.

关键词: 非黏性土石坝漫顶数值模拟线性冲蚀公式中心迎风格式    
Abstract:

A two-dimensional non-cohesive earthen embankment breach model was developed based on a linear erosion formula. Instead of using sediment transport rate and solving sediment transport equations, the relationship between the bed erosion rate and the flow shear stress was directly established based on a linear erosion formula, to calculate the embankment breach. Compared to the existing detailed physically based model, the proposed model was simpler and more efficient. Firstly, two different examples were used, and the validity of a bed slope failure algorithm was verified. Then, the proposed model was applied to simulate the overtopping breach experiments of one-dimensional and two-dimensional non-cohesive earthen embankment. Results showed that the calculated values of the model were all in good agreement with the measurements at the crest elevation, the final breach width and the peak discharge. And the breach of non-cohesive earthen embankment was simulated fairly accurately by the model. Finally, a sensitivity analysis of key parameters was performed to investigate the effects of different parameter values on the simulated results.

Key words: non-cohesive earthen embankment    overtopping    numerical simulation    linear erosion formula    central-upwind scheme
收稿日期: 2021-04-12 出版日期: 2022-03-29
CLC:  TV 131.4  
基金资助: 国家自然科学基金资助项目(51909234);浙江省自然科学基金资助项目(LQ19E090006);浙江省教育厅一般科研资助项目(Y201737690)
通讯作者: 吴钢锋     E-mail: 21912141@zju.edu.cn;zjdxwgf@gmail.com
作者简介: 刘梦凡(1996—),男,硕士生,从事水动力数值模拟研究. orcid.org/0000-0002-8261-5791. E-mail: 21912141@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘梦凡
吴钢锋
张科锋
董平

引用本文:

刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.

Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.016        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/569

图 1  土石坝溃决模型计算网格示意图
图 2  边坡坍塌过程示意图
图 3  土石坝溃决模型计算流程图
图 4  边坡坍塌验证算例:棱柱形渠道
图 5  边坡坍塌验证算例:半椭球形隆起
图 6  一维漫顶溃坝实验布置图
图 7  不同冲蚀系数时坝体纵断面高程计算值和测量值的对比结果
图 8  模型分别考虑和不考虑边坡坍塌模块计算得到的坝体纵断面高程
图 9  不同冲蚀系数时流量过程线计算值和测量值的对比
算例 Qmax/(m3·s?1) δm/% δr/% zbf/m δm/% δr/%
测量值 0.110 0.540
参照组 0.113 3.50 0.575 6.44
τc = 10?1 Pa 0.113 3.50 0 0.575 6.44 0
τc = 10?3 Pa 0.113 3.50 0 0.575 6.44 0
φc,wet = 25° 0.129 17.54 13.56 0.482 ?10.83 ?16.23
φc,wet = 35° 0.100 ?9.03 ?12.11 0.635 10.54 10.54
φc,dry = 40° 0.113 3.50 0 0.575 6.44 0
φc,dry = 60° 0.113 3.50 0 0.575 6.44 0
φc,dry = 70° 0.113 3.50 0 0.575 6.44 0
φc,dry = 80° 0.113 3.50 0 0.575 6.44 0
nf= 0.015 m?1/3·s 0.083 ?24.24 ?27.00 0.672 24.44 17.00
nf= 0.020 m?1/3·s 0.138 25.45 22.12 0.493 ?8.70 ?14.26
表 1  一维漫顶溃坝算例参数敏感性分析
图 10  二维漫顶溃坝实验布置图
图 11  不同时刻坝体高程计算结果
图 12  不同时刻沿坝轴线方向高程剖面计算结果
图 13  溃口峰值流量时刻坝体高程及流矢计算结果
图 14  溃口流量和溃口宽度模型计算值与测量值的对比
图 15  二维漫顶溃坝算例参数敏感性分析
1 陈阳, 刘志文 美国伊登维尔大坝和桑福德大坝事故及教训[J]. 中国煤炭, 2020, 46 (7): 113- 117
CHEN Yang, LIU Zhi-wen Edenville Dam and Sanford Dam accidents in the United State and warnings for China[J]. China Coal, 2020, 46 (7): 113- 117
2 李宏恩, 盛金保, 何勇军 近期国际溃坝事件对我国大坝安全管理的警示[J]. 中国水利, 2020, (16): 19- 22
LI Hong-en, SHENG Jin-bao, HE Yong-jun Global dam break events raise an alert about dam safety management[J]. China Water Resources, 2020, (16): 19- 22
3 周建银, 姚仕明, 王敏, 等 土石坝漫顶溃决及洪水演进研究进展[J]. 水科学进展, 2020, 31 (2): 287- 301
ZHOU Jian-yin, YAO Shi-ming, WANG Min, et al Review on overtopping failure and flood evolution of earth-rock dams[J]. Advances in Water Science, 2020, 31 (2): 287- 301
4 ASCE/EWRI Task Committee on Dam/Levee Breaching Earthen embankment breaching[J]. Journal of Hydraulic Engineering, 2011, 137 (12): 1549- 1564
doi: 10.1061/(ASCE)HY.1943-7900.0000498
5 梅世昂, 陈生水, 钟启明, 等 土石坝溃坝参数模型研究[J]. 工程科学与技术, 2018, 50 (2): 60- 66
MEI Shi-ang, CHEN Sheng-shui, ZHONG Qi-ming, et al Parametric model for breaching analysis of earth-rock dam[J]. Advanced Engineering Sciences, 2018, 50 (2): 60- 66
6 FROEHICH D C Embankment dam parameters and their uncertainties[J]. Journal of Hydraulic Engineering, 2008, 134 (12): 1708- 1721
doi: 10.1061/(ASCE)0733-9429(2008)134:12(1708)
7 GUAN M, WRIGHT N G, SLEIGH P A 2D process-based morpho-dynamic model for flooding by non-cohesive dyke breach[J]. Journal of Hydraulic Engineering, 2014, 140 (7): 04014022
doi: 10.1061/(ASCE)HY.1943-7900.0000861
8 ZHONG Q, WU W, CHEN S, et al Comparison of simplified physically based dam breach models[J]. Natural Hazards, 2016, 84: 1385- 1418
doi: 10.1007/s11069-016-2492-9
9 杨忠勇, 罗铃, 杨百银, 等 土石坝溃决过程中溃口发展及溃坝洪水计算方法讨论[J]. 水力发电学报, 2019, 45 (9): 43- 47
YANG Zhong-yong, LUO Ling, YANG Bai-yin, et al Discussion on the breach process of earth-rock dam and the calculation method of dam breach flood[J]. Water Power, 2019, 45 (9): 43- 47
10 WU W Simplified physically based model of earthen embankment breaching[J]. Journal of Hydraulic Engineering, 2013, 139 (8): 837- 851
doi: 10.1061/(ASCE)HY.1943-7900.0000741
11 傅旭东, 刘帆, 马宏博, 等 基于物理模型的唐家山堰塞湖溃决过程模拟[J]. 清华大学学报:自然科学版, 2010, 50 (12): 1910- 1914
FU Xu-dong, LIU Fan, MA Hong-bo, et al Physically based simulation of the breaching of the Tangjiashan Quake Lake[J]. Journal of Tsinghua University: Science and Technology, 2010, 50 (12): 1910- 1914
12 WANG G Q, LIU F, FU X D, et al Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China[J]. Science in China Series E: Technological Sciences, 2008, 51: 82- 94
doi: 10.1007/s11431-008-6019-9
13 LIU W, HE S Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods[J]. Natural Hazards, 2018, 90: 757- 775
doi: 10.1007/s11069-017-3073-2
14 霍家平, 钟启明, 梅世昂 土石坝溃决过程数值模拟研究进展[J]. 人民长江, 2018, 49 (2): 98- 103
HUO Jia-ping, ZHONG Qi-ming, MEI Shi-ang Review on numerical modeling of earth-rock dam breaching process[J]. Yangtze River, 2018, 49 (2): 98- 103
15 吴钢锋, 贺治国, 刘国华 具有守恒特性的二维溃坝洪水演进数值模型[J]. 水科学进展, 2013, 24 (5): 683- 691
WU Gang-feng, HE Zhi-guo, LIU Guo-hua A well-balanced two-dimensional numerical model for dam-break flow simulation[J]. Advance in Water Science, 2013, 24 (5): 683- 691
16 吴钢锋, 贺治国, 刘国华 基于守恒稳定格式的二维坡面降雨动力波洪水模型[J]. 浙江大学学报:工学版, 2014, 48 (3): 514- 520
WU Gang-feng, HE Zhi-guo, LIU Guo-hua Well-balanced two-dimensional dynamic wave model for rainfall-induced overland flood[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (3): 514- 520
17 TINGSANCHALI T, CHINNARASRI C Numerical modelling of dam failure due to flow overtopping[J]. Hydrological Sciences Journal, 2001, 46 (1): 113- 130
doi: 10.1080/02626660109492804
18 DAZZI S, VACONDIO R, MIGNOSA P Integrated of a levee breach erosion model in a GPU-accelerated 2D shallow water equations code[J]. Water Resource Research, 2019, 55: 682- 702
doi: 10.1029/2018WR023826
19 VOLZ C, ROUSSELOT P, VETSCH, D, et al Numerical modelling of non-cohesive embankment breach with the dual-mesh approach[J]. Journal of Hydraulic Research, 2012, 50 (6): 587- 598
doi: 10.1080/00221686.2012.732970
20 ELALFY E , TABRIZI A A, CHAUDHRY M H. Numerical and experimental modeling of levee breach including slumping failure of breach sides[J]. Journal of Hydraulic Engineering, 2018, 144 (2): 04017066
doi: 10.1061/(ASCE)HY.1943-7900.0001406
21 HANSON G J, WAHL T L, TEMPLE D, et al. Erodibility characteristics of embankment materials [C]// State Dam Safety Officials Association Proceedings. Seattle: [s. n.], 2010.
22 MORRIS M W, HASSAN M, A A M, et al Breach formation: field test and laboratory experiments[J]. Journal of Hydraulic Research, 2005, 45 (Supp1.1): 9- 17
[1] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[2] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.
[3] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[4] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[5] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[6] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[7] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[8] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[9] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[10] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[11] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[12] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[13] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[14] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[15] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.