Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 579-589    DOI: 10.3785/j.issn.1008-973X.2022.03.017
土木工程、水利工程     
输电塔扭转响应和扭转等效风荷载的计算方法
沈国辉1(),李保珩1,郭勇2,赵峥3,潘峰2
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 中国能源建设集团浙江省电力设计院有限公司,浙江 杭州 310012
3. 中国电力顾问集团华东电力设计研究院有限公司,上海 200063
Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower
Guo-hui SHEN1(),Bao-heng LI1,Yong GUO2,Zheng ZHAO3,Feng PAN2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. China Energy Engineering Group Zhejiang Electric Power Design Institute Limited Company, Hangzhou 310012, China
3. China Power Engineering Consulting Group East China Electric Power Design Institute Limited Company, Shanghai 200063, China
 全文: PDF(2093 KB)   HTML
摘要:

针对输电塔的扭转效应,提出顺线路方向扭转响应和扭转等效风荷载的理论计算方法,分析扭转模态和相干函数对扭转响应的影响,进行气弹模型风洞试验以验证计算结果的准确性,给出同时考虑扭转与平动的风振系数计算公式. 结果表明:所提出顺线路方向扭转响应计算方法与风洞试验结果非常接近,计算方法的准确性得以验证;扭转响应计算中应同时考虑水平向与竖直向的相干函数;顺横担方向来流时的扭转响应理论计算结果小于风洞试验值,原因是此时杆件间的遮挡效应产生特征湍流;塔身的扭转放大系数可忽略,横担的扭转放大系数不可忽略,最大值为1.1.

关键词: 输电塔扭转效应等效风荷载气弹模型长横担    
Abstract:

A theoretical calculating method to deal with the along-line torsion response and torsion equivalent static wind load was proposed aiming to the torsion effect of transmission tower. The influence of different torsion modes and coherence functions on the torsion response was analyzed. Aeroelastic model wind tunnel tests were carried out to justify the theoretical results. The calculating methods of gust loading factors considering both the torsion and translational effects were developed. Results show that calculating results of the along-line torsion responses are coincided well with those of the aeroelastic model tests, indicating the rationality of the proposed methods. The horizontal and vertical coherence functions should both be adopted to obtain the torsion response. When wind blows from the along cross arm direction, the theoretical torsion responses are less than those of the aeroelastic model tests, which is due to the signature turbulence induced by the shielding effect of tower members. The torsion magnified factor (TMF) of tower body is small, whereas the TMF of the cross-arm cannot be ignored in which a factor up to 1.1 can be found.

Key words: transmission tower    torsion effect    equivalent static wind load    aeroelastic model    long cross arm
收稿日期: 2021-03-29 出版日期: 2022-03-29
CLC:  TU 312.1  
基金资助: 国家自然科学基金资助项目(51838012, 52178511)
作者简介: 沈国辉(1977—),男,副教授,博士,从事输电线路力学行为和结构风工程研究. orcid.org/0000-0002-3528-4117.E-mail: ghshen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
沈国辉
李保珩
郭勇
赵峥
潘峰

引用本文:

沈国辉,李保珩,郭勇,赵峥,潘峰. 输电塔扭转响应和扭转等效风荷载的计算方法[J]. 浙江大学学报(工学版), 2022, 56(3): 579-589.

Guo-hui SHEN,Bao-heng LI,Yong GUO,Zheng ZHAO,Feng PAN. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 579-589.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/579

图 1  T型输电塔的尺寸图
主材 斜材 辅材
mm
L280×35 L200×18 L140×12
L250×32 L200×16 L140×10
L250×30 L200×14 L90×7
L250×28 L180×16 L80×7
L250×24 L180×14 L80×6
L220×26 L160×14 L75×6
L220×22 L160×12 L75×5
- L160×10 L70×5
- - L63×5
- - L56×5
- - L50×5
- - L50×4
表 1  T型输电塔的角钢杆件截面
图 2  T型输电塔前3阶扭转模态
图 3  T型输电塔横担和塔身的前3阶扭转振型
图 4  不同模态的扭转角标准差
图 5  不同相干函数的扭转角标准差
图 6  0°风向下横担端点扭转角标准差
图 7  T型输电塔等效扭矩
名称 数值 名称 数值
尺寸相似系数CL 1/40 拉伸刚度相似系数CEA 1/14400
面积相似系数CA 1/1600 频率相似系数Cf 13.33
空气密度相似系数Cρf 1 加速度相似系数Ca 4.44
结构密度相似系数Cρs 1 风速相似系数Cv 1/3
质量相似系数Cm 1/64000 位移相似系数Cy 1/40
表 2  气弹模型的相似系数
图 8  输电塔的气动弹性模型
图 9  风向角和力系规定示意图
图 10  风洞模拟的B类风场
图 11  位移响应的测点布置
振型 nc/Hz nt/Hz ζ
1阶扭转 16.67 16.49 0.019 1
x向一弯 20.40 18.89 0.008 2
y向一弯 23.33 24.07 0.017 8
表 3  模态参数识别结果
图 12  测点位移时程
图 13  横担的扭转角时程
图 14  0°风向下横担端点扭转角标准差
η/(°) Fsx Fsy Fbx Fby
0 0 Wsb 0 Wsc
45 0.424×
Wsa+Wsb
0.424×
Wsa+Wsb
0.35Wsc 0.7Wsc
60 (0.747Wsa+
0.249Wsb
(0.431Wsa+
0.144Wsb
0.40Wsc 0.55Wsc
90 Wsa 0 0.45Wsc 0
表 4  角度风情况下的风荷载分配表
图 15  倾斜风向下横担端点扭转角标准差
图 16  T型输电塔风振系数
图 17  T型输电塔扭转放大系数
图 18  0°风向下T型输电塔的风振系数
1 SOLARI G Mathematical model to predict 3-D wind loading on buildings[J]. Journal of Engineering Mechanics, 1985, 111 (2): 254- 276
doi: 10.1061/(ASCE)0733-9399(1985)111:2(254)
2 ISYUMOV N, POOLE M Wind induced torque on square and rectangular building shapes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13 (1): 183- 196
3 梁枢果, 瞿伟廉, 李桂青 高层建筑横风向与扭转风振力计算[J]. 土木工程学报, 1991, 24 (4): 65- 73
LIANG Shu-guo, QU Wei-lian, LI Gui-qing An evaluation of dynamic loads in across-wind direction and torsion on tall buildings[J]. China Civil Engineering Journal, 1991, 24 (4): 65- 73
4 LIANG S, LI Q S, LIU S, et al Torsional dynamic wind loads on rectangular tall buildings[J]. Engineering Structures, 2004, 26 (1): 129- 137
doi: 10.1016/j.engstruct.2003.09.004
5 MARUKAWA H, OHKUMA T, MOMOMURA Y Across-wind and torsional acceleration of prismatic high rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42 (1/3): 1139- 1150
6 TALLIN A, ELLINGWOOD B Wind induced lateral-torsional motion of buildings[J]. Journal of Structural Engineering, 1985, 111 (10): 2197- 2213
doi: 10.1061/(ASCE)0733-9445(1985)111:10(2197)
7 邹良浩, 梁枢果, 汪大海, 等 基于风洞试验的对称截面高层建筑三维等效静力风荷载研究[J]. 建筑结构学报, 2012, 33 (11): 27- 35
ZOU Liang-hao, LIANG Shu-guo, WANG Da-hai, et al Analysis of three dimensional equivalent static wind loads on symmetrical high-rise buildings based on wind tunnel tests[J]. Journal of Building Structures, 2012, 33 (11): 27- 35
8 段松涛, 吴海洋, 包永忠, 等 特高压直流输电塔风振响应参与模态分析[J]. 土木工程与管理学报, 2013, 30 (3): 29- 32
DUAN Song-tao, WU Hai-yang, BAO Yong-zhong, et al Participant mode analysis of wind-induced responses of HVDC power transmission tower[J]. Journal of Civil Engineering and Management, 2013, 30 (3): 29- 32
9 黄凤华, 张大长, 李布辉, 等 ±1 100 kV特高压直流输电线铁塔风致响应及风振系数研究[J]. 钢结构, 2017, 32 (7): 49- 53
HUANG Feng-hua, ZHANG Da-chang, LI Bu-hui, et al Wind-induced dynamic response and vibration coefficient of ±1 100 kilovolt extra-high voltage direct current transmission line tower[J]. Steel Construction, 2017, 32 (7): 49- 53
10 楼文娟, 段志勇, 金晓华, 等 风速水平空间相关性对长横担输电塔风效应的影响[J]. 振动与冲击, 2014, 33 (13): 63- 66
LOU Wen-juan, DUAN Zhi-yong, JIN Xiao-hua, et al Influence of turbulent transverse space correlation on wind induced responses of long cantilever transmission towers[J]. Journal of Vibration and Shock, 2014, 33 (13): 63- 66
11 翁文涛. 特高压T型输电塔的风荷载和风致响应研究[D]. 杭州: 浙江大学, 2019: 58-93.
WENG Wen-tao. Study on wind loading and wind-induced response of UHV T-shaped transmission tower [D]. Hangzhou: Zhejiang University, 2019: 58-93.
12 赵建, 叶震, 余亮, 等 ±1 100 kV特高压长悬臂输电铁塔风振特性研究[J]. 工业建筑, 2019, 49 (4): 8- 14
ZHAO Jian, YE Zhen, YU Liang, et al Wind-induced dynamic response and vibration coefficient of ±1 100 kilovolt DC UHV transmission tower with long cantilever[J]. Industrial Construction, 2019, 49 (4): 8- 14
13 杨子烨, 宋雪祺, 邓洪洲 ±1 100 kV特高压输电塔风振响应频域分析[J]. 中南大学学报:自然科学版, 2020, 51 (8): 2121- 2131
YANG Zi-ye, SONG Xue-qi, DENG Hong-zhou Frequency domain analysis of wind-induced response of ±1 100 kV ultra-high voltage (UHV) transmission tower[J]. Journal of Central South University: Science and Technology, 2020, 51 (8): 2121- 2131
14 张骞, 叶震, 蔡建国, 等 特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J]. 东南大学学报:自然科学版, 2019, 49 (1): 1- 8
ZHANG Qian, YE Zhen, CAI Jian-guo, et al Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (1): 1- 8
15 张爽, 孙清, 吴彤, 等 ±1 100 kV输电塔风振响应及风振系数研究[J]. 特种结构, 2018, 35 (4): 52- 59
Zhang Shuang, Sun Qing, Wu Tong, et al Research on wind-induced response analysis and vibration coefficient of ±1 100 kV transmission tower[J]. Special Structures, 2018, 35 (4): 52- 59
doi: 10.3969/j.issn.1001-3598.2018.04.009
16 聂建波, 潘峰, 沈建国, 等 ±800 kV特高压T型长横担输电塔风振特性研究[J]. 特种结构, 2013, 30 (1): 48- 52
NIE Jian-bo, PAN Feng, SHEN Jian-guo, et al Study on wind-induced vibration characteristics of ± 800 kV UHV T shaped long cross-arm transmission tower[J]. Special Structures, 2013, 30 (1): 48- 52
17 杨子烨, 邓洪洲 长横担输电塔扭转向等效静力风荷载[J]. 振动与冲击, 2021, 40 (3): 125- 132
YANG Zi-ye, DENG Hong-zhou Equivalent static wind load in torsional direction of long cross arm transmission tower[J]. Journal of Vibration and Shock, 2021, 40 (3): 125- 132
18 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001: 59-68.
19 YANG C Y, SAUNDERS H Random vibration of structures[J]. Journal of Vibration and Acoustics, 1989, 111 (1): 116- 117
doi: 10.1115/1.3269806
20 国家能源局. 架空输电线路荷载规范: DL/T 5551—2018 [S]. 北京: 中国计划出版社, 2018: 10-26.
[1] 卞荣,楼文娟,李航,赵夏双,章李刚. 不同流场下钢管输电塔塔身气动力特性[J]. 浙江大学学报(工学版), 2019, 53(5): 910-916.
[2] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.
[3] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[4] 桂龙辉, 谢霁明, 林颖孜, 张鸿玮. 悬挑环形廊桥的气动弹性模型试验[J]. 浙江大学学报(工学版), 2017, 51(11): 2121-2129.
[5] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[6] 王磊,梁枢果,邹良浩,汤怀强,王述良. 超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[7] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[8] 楼文娟,杨伦,陈勇,阎东. 覆冰导线静张力对输电塔横担的作用特征[J]. J4, 2013, 47(11): 1917-1925.
[9] 楼文娟, 姜雄, 夏亮, 金晓华, 王振华. 长横担输电塔风致薄弱部位及加强措施[J]. J4, 2013, 47(10): 1798-1784.
[10] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[11] 沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.
[12] 王昕, 楼文娟, 李宏男, 等. 雷暴冲击风作用下高耸输电塔风振响应[J]. J4, 2009, 43(8): 1520-1525.
[13] 沈国辉 何运祥 孙炳楠 叶尹 楼文娟 李宏男. 绝缘子断裂对大跨越输电线路的动力效应[J]. J4, 2008, 42(11): 1990-1995.
[14] 郭勇 孙炳楠 叶尹 沈国辉 楼文娟. 大跨越输电塔线体系气弹模型风洞试验[J]. J4, 2007, 41(9): 1482-1486.
[15] 沈国辉 孙炳楠 楼文娟. 求解建筑结构风致抖振问题的方法分析[J]. J4, 2007, 41(1): 34-39.