Please wait a minute...
J4  2011, Vol. 45 Issue (4): 678-683    DOI: 10.3785/j.issn.1008-973X.2011.04.015
土木工程、建筑工程     
高压输电塔的断线分析和断线张力计算
沈国辉1, 孙炳楠1,2, 叶尹3, 楼文娟1
1.浙江大学 土木工程学系,浙江 杭州 310058; 2浙江大学宁波理工学院 土木建筑工程分院,浙江 宁波 315100;
3.浙江省电力设计院,浙江 杭州 310007
Broken wire analysis and broken wire load calculation of
high voltage transmission tower
SHEN Guo-hui1, SUN Bing-nan1,2, YE Yin3, LOU Wen-juan1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; 2. School of Civil Engineering
and Architeture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
3. Electric Power Design Institute of Zhejiang Province, Hangzhou 310007, China
 全文: PDF  HTML
摘要:

针对高压输电塔的断线张力问题采用有限元方法(FEM)进行分析,建立输电塔、输电线以及地面的有限元模型.利用单元生死方法来模拟输电线的突然断裂,采用摩擦和接触来模拟跌落导线与地面的作用,获得输电塔线体系的断线响应和断线张力,并将断线张力结果与规范、文献中的方法进行比较.分析发现,当紧靠断线档的绝缘子摆幅达到最大时,输电线路的各种响应如绝缘子轴力、输电塔的顺线向剪力等几乎同时达到峰值.在只考虑静力作用的情况下,规范的断线张力数据大于有限元计算结果,基于曲线法的数据和计算结果非常接近;若考虑断线的动力冲击作用,则规范和曲线法的数据均比有限元结果小很多.

Abstract:

The finite element method (FEM) was employed to solve the broken wire problem of high voltage transmission tower. The finite element model including transmission tower, transmission line and the ground was conducted. The method using the death of cable element was used to simulate the sudden breaking of transmission line. The friction and contact were considered to simulate the interaction between the dropping wire and the ground. Then the responses of transmission towerline system due to wire breakage were obtained and the broken wire loads were calculated. These broken wire loads were compared with the loads calculated from the codes and literatures. When the sway amplitude of insulator adjacent to the broken span reaches maximum, the responses of transmission line such as the axial force of insulator and along-line shear force of tower will reach their maximal values at the same time. If the static effect is considered, the broken wire loads obtained from codes are larger than the loads from FEM and the broken wire loads calculated based on the curve method and FEM are very close. If the dynamic impact effect is considered, the broken wire loads from codes and the curve method are much smaller than those from FEM.

出版日期: 2011-05-05
:  TU 312.1  
基金资助:

国家自然科学基金资助项目(50638010);浙江省自然科学基金资助项目(Y1080207).

作者简介: 沈国辉(1977—), 男, 浙江台州人,副教授,从事结构计算分析和风工程研究. E-mail: ghshen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.

SHEN Guo-hui, SUN Bing-nan, YE Yin, LOU Wen-juan. Broken wire analysis and broken wire load calculation of
high voltage transmission tower. J4, 2011, 45(4): 678-683.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.04.015        http://www.zjujournals.com/eng/CN/Y2011/V45/I4/678

[1] OSWALD B, SCHROEDER D, CATCHPOLE P. Investigative summery of the July 1993 Nebraska Public District Grand Island: Moore 345kV transmission line failure [C]∥ Transmission and Distribution Conference, Proceedings of the 1994 IEEE Power Engineering Society. Chicago: IEEE, 1994: 574-580.
[2] CAMPBELL D B. Unbalanced tensions in transmission lines [J]. Journal of the Structural Division, Proceeding of American Society of Civil Engineering, 1970, 96(ST10): 2189-2207.
[3] MOZER J D, POHLMAN J C, FLEMING J F. Longitudinal load analysis of transmission line systems [J]. IEEE Transactions on Power Apparatus and System, 1977, PAS96(5): 1657-1664.
[4] THOMAS M B, PEYROT A H. Dynamic response of ruptured conductors in transmission lines [J]. IEEE Transactions on Power Apparatus and System, 1982, PAS101(9): 3022-3027.
[5] SIDDIQUI F M A, FLEMING J F. Broken wire analysis of transmission line systems [J]. Computer and Structures, 1984, 18(6): 1077-1085.
[6] MCCLURE G, TINAWI R. Mathematical modeling of the transient response of electric transmission lines due to conductor breakage [J]. Computer and Structures, 1987, 26(1/2): 41-56.
[7] MCCLURE G, LAPOINTE M. Modeling the structural dynamic response of overhead transmission lines [J]. Computer and Structures, 2003, 81(811): 825-834.
[8] 李黎,夏正春,江宜城,等.输电线断线振荡研究[J].工程力学,2008,25(6): 165-169.
LI Li, XIA Zhengchun, JIANG Yicheng, et al. Study on wire breakinginduced vibrations of electric transmission line [J]. Engineering Mechanics, 2008, 25(6): 165-169.
[9] DL/T 50921999. 110~500 kV架空送电线路设计技术规程[S].北京:中国电力出版社,1999.
[10] DL/T 51542002.架空送电线路杆塔结构设计技术规定[S].北京:中国电力出版社,2002.
[11] 许建安. 35~110kV输电线路设计[M].北京:中国水利水电出版社,2003: 72-76.
[12] 沈国辉,何运祥,孙炳楠,等.绝缘子断裂对大跨越输电塔的动力效应[J].浙江大学学报:工学版,2008,42(11): 1990-1995.
SHEN Guohui, HE Yunxiang, SUN Bingnan, et al. Dynamic effect on longspan transmission line system due to insulator rupture [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(11): 1990-1995.
[13] 沈国辉,孙炳楠,何运祥,等.大跨越输电塔线体系的地震响应研究[J].工程力学,2008,25(11): 212-217.
SHEN Guohui, SUN Bingnan, HE Yunxiang, et al. Research on earthquake effect of longspan transmission towerline system [J]. Engineering Mechanics, 2008, 25(11): 212-217.
[14] GB5016892.电气装置安装工程旋转电机施工及验收规范[S].北京:中国计划出版社,1992.

[1] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[2] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[3] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[4] 章李刚,楼文娟,黄铭枫. 基于POD法控制模态选择的大跨屋盖
结构风致动力响应分析
[J]. J4, 2012, 46(9): 1599-1604.
[5] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[6] 沈国辉, 余关鹏, 孙炳楠, 楼文娟, 李庆祥, 杨仕超. 大型冷却塔风致响应的干扰效应[J]. J4, 2012, 46(1): 33-38.
[7] 沈国辉,袁光辉,楼文娟,孙炳楠. 绝缘子在输电塔线体系动力计算中的作用分析[J]. J4, 2011, 45(11): 1960-1965.