Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1798-1784    DOI: 10.3785/j.issn.1008-973X.2013.10.015
土木工程     
长横担输电塔风致薄弱部位及加强措施
楼文娟1, 姜雄1, 夏亮1, 金晓华2, 王振华2
1.浙江大学 结构工程研究所,浙江 杭州 310058;2.广东省电力设计研究院,广东 广州 510663
Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower
LOU Wen-juan1, JIANG Xiong1, XIA Liang1, JIN Xiao-hua2, WANG Zhen-hua2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China; 2. Guangdong Electric Power Design Institute, Guangzhou 510663, China
 全文: PDF  HTML
摘要:

以沿海地区某220 kV长横担角钢输电塔为原型,通过气弹模型风洞试验考察结构的气动失稳趋势及薄弱部位,结合数值分析研究抗风加强措施.塔头部位由于不利的气固耦合效应,在高风速下出现了较明显的弯扭耦合振动现象|塔身下部长斜材在风振激励下,产生局部振动,面外位移增大,易引发构件的压弯破坏.分别采取增强塔头斜材和增设横隔面等措施对原结构进行抗风加强设计.后续试验结果和理论计算均表明:加强横担之间的斜材对减小塔头扭转振动的效果明显;在长斜材节段处增设横隔面可以抑制局部振型的提前出现,有效地降低斜材的压弯应力,从而提高整塔的极限承载能力.

Abstract:

A fine aero-elastic model of 220kV long cross-armed angle steel transmission tower was designed and produced to investigate wind-induced response under terrain B wind field. Structural optimization for wind resistant design of the tower was conducted by means of the numerical analysis and the phenomena of the wind tunnel test. Essential conclusions are as follows: due to the gas-solid coupled effect, strong flexure-torsion vibration was observed during the wind tunnel test, which would lead to the premature instability of angle steel members. Several local vibrations appeared in the very first several modes subjected to the fluctuating wind excitation, which resulted in the large out-of-plane deformation and eventually the reduction of the ultimate bearing capacity. Further research shows that the torsional vibration can be apparently reduced by increasing the rigidity of diagonal bracings between the arms of the tower. Adding diaphragms with appropriate arrangements can remarkably optimize the dynamic characteristics, suppress the local vibrations, and ensure the global stability of the tower.

出版日期: 2013-10-01
:  TU 973.32  
基金资助:

国家自然科学基金资助项目(51178424).

作者简介: 楼文娟(1963—),女,教授,从事结构风工程的研究.E-mail:Louwj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

楼文娟, 姜雄, 夏亮, 金晓华, 王振华. 长横担输电塔风致薄弱部位及加强措施[J]. J4, 2013, 47(10): 1798-1784.

LOU Wen-juan, JIANG Xiong, XIA Liang, JIN Xiao-hua, WANG Zhen-hua. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower. J4, 2013, 47(10): 1798-1784.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.10.015        http://www.zjujournals.com/eng/CN/Y2013/V47/I10/1798

[1] 张勇.输电线路风灾防御的现状与对策[J].华东电力,2006,34(3): 28-31.

ZHANG Yong. Status quo of wind hazard prevention for transmission lines and countermeasures [J]. East China Electric Power, 2006, 34(3): 28-31.

[2] RAO P N, KNIGHT S G M, LAKSHMANAN N, et al. Investigation of transmission line tower failures[J]. Engineering Failure Analysis. 2010, 17(5): 1127-1141.

[3] 王世村,孙炳楠,楼文娟,等.单杆输电塔气弹模型风洞试验研究和理论分析[J].浙江大学学报:工学版,2005,39(1): 88-91.

WANG Shi-cun, SUN Bing-nan, LOU Wen-juan, et al. Wind tunnel test and theoretical analysis on aeroelastic model of single-rod transmission tower [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(1): 88-91.

[4] 楼文娟,孙炳楠,唐锦春.高耸格构式结构风振数值分析及风洞试验[J].振动工程学报,1996,9(3): 319-322.

LOU Wen-juan, SUN Bing-nan, TANG Jin-chun. Wind tunnel test and numerical computation on wind-induced vibration for tall lattice tower [J]. Journal of Vibration Engineering, 1996, 9(3): 319322.

[5] 赵桂峰,谢强,梁枢果, 等.输电塔架与输电塔-线耦联体系风振响应风洞试验研究[J]. 建筑结构学报, 2010, 32(2): 69-77.

ZHAO Gui-feng, XIE Qiang, LIANG Shu-guo, et al. Wind tunnel test on wind-induced response of transmission tower and tower line coupling system [J]. Journal of Building Structures, 2010, 32(2): 69-77.

[6] 谢强,阎启,李杰.横隔面在高压输电塔抗风设计中的作用分析[J].高压电技术,2006,32(4): 1-4.

XIE Qiang, YAN Qi, LI Jie. Effects of diaphragm on wind resistant design of power transmission tower [J]. High Voltage Engineering, 2006, 32(4): 1-4.

[7] 屈成忠,刘春玲,李霞,等.500kV猫头塔结构动力特性分析[J].东北电力大学学报:自然科学版,2008,28(6): 15.

QU Cheng-zhong, LIU Chun-ling, LI Xia, et al. Dynamic characteristic analysis of 500kV cat-head transmission tower [J]. Journal of Northeast Dianli University: Natural Science Edition, 2008, 28(6): 15.

[8] ALBERMANI F, MAHENDRAN M, KITIPORNCHAI S. Upgrading of transmission towers using a diaphragm bracing system [J]. Engineering Structures, 2004, 26(6): 735-744.

[9] 高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.

[10] 谢强,丁兆东,赵桂峰,等.不同横隔面配置方式的输电塔抗风动力响应分析[J].高压电技术, 2009, 35(3): 683-687.

XIE Qiang, DING Zhao-dong, ZHAO Gui-feng, et al. Wind resistant analysis of power transmission tower with different diaphragm arrangements [J]. High Voltage Engineering, 2009, 35(3): 683687.

[11] ALBERMANI F, KITIPORNCHAI S. Numerical simulation of structural behavior of transmission towers [J].Thin-Walled Structures, 2003, 41(2-3): 167-177.

[12] ROY S, SHU Jin-fang, ROSSOW E C. Secondary stresses on transmission tower structures [J]. Journal of Energy Engineering, 1984, 110(2): 157-172.

[13] BUDIANSKY R. Axisymmetric dynamic buckling of clamped shallow spherical shells [C]∥Langley Research Center. Instability of Shell Structure. USA: NASA, 1962: 597-606.

No related articles found!