Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 910-916    DOI: 10.3785/j.issn.1008-973X.2019.05.011
土木与水利工程     
不同流场下钢管输电塔塔身气动力特性
卞荣1(),楼文娟2,*(),李航2,赵夏双3,章李刚3
1. 国网浙江省电力公司经济技术研究院,浙江 杭州 310027
2. 浙江大学 结构工程研究所,浙江 杭州 310027
3. 浙江华云电力工程设计咨询有限公司,浙江 杭州 310027
Aerodynamic characteristics of steel tubular transmission tower in different flow fields
Rong BIAN1(),Wen-juan LOU2,*(),Hang LI2,Xia-shuang ZHAO3,Li-gang ZHANG3
1. State Grid Zhejiang Economic Research Institute, Hangzhou 310027, China
2. Institute of Structural Engineering, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Huayun Electric Power Engineering Design and Consulting Co. Ltd, Hangzhou 310027, China
 全文: PDF(1186 KB)   HTML
摘要:

根据SZ27102钢管输电塔塔身1/3高度处的典型节段截面尺寸,设计制作不同密实度和宽高比的塔身节段模型及迎风面单片桁架模型. 分别在均匀层流场和均匀湍流场下开展高频测力风洞试验,获得迎风面单片桁架体型系数、背风面荷载降低系数和塔身节段体型系数等气动力参数. 结果表明,高湍流度来流条件会导致单片桁架体型系数的减小以及背风面荷载降低系数的增大,从而导致2类流场下钢管塔塔身节段体型系数较接近. 对于单片钢管桁架体型系数,中国规范推荐取值总体小于试验值,且当密实度较小时偏小程度较明显,建议规范考虑密实度对单片钢管桁架体型系数的影响,适当提高单片钢管桁架体型系数;对于背风面荷载降低系数,中国规范取值大于试验值,也大于英国规范取值,建议中国规范对钢管输电塔背风面荷载降低系数做部分调整.

关键词: 钢管输电塔塔身节段均匀湍流场体型系数背风面荷载降低系数    
Abstract:

Tower body section and single windward frame models with different solidity ratios and aspect ratios were designed and constructed based on the section size of a typical panel at 1/3 height of SZ27102 steel tubular transmission tower. Wind tunnel tests were carried out in uniform laminar flow and uniform turbulent flow fields based on high-frequency-force-balance technique. The drag coefficients of single windward frames, shielding factors and overall drag coefficients of tower body section were measured and analyzed. Results showed that high intensity turbulence reduced the drag coefficients of single frames and increased the shielding factors, therefore the overall drag coefficients of tower body section measured in two flow fields were almost equal. The drag coefficients of single frames suggested by Chinese code were smaller than the measured values, particularly when the solidity ratio was small. It is suggested that the drag coefficients of single frames in Chinese code should be increased with consideration of the effect of solidity ratio. Some adjustment for the shielding factors are suggested as the values suggested by Chinese code are larger than the measured values and those suggested by British code.

Key words: steel tubular transmission tower    tower body section    uniform turbulent flow field    drag coefficient    shielding factor
收稿日期: 2018-03-30 出版日期: 2019-05-17
CLC:  TU 312  
通讯作者: 楼文娟     E-mail: bianrong1@163.com;louwj@zju.edu.cn
作者简介: 卞荣(1970—),男,高级工程师,从事输电线路设计研究. orcid.org/0000-0002-4221-1231. E-mail: bianrong1@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
卞荣
楼文娟
李航
赵夏双
章李刚

引用本文:

卞荣,楼文娟,李航,赵夏双,章李刚. 不同流场下钢管输电塔塔身气动力特性[J]. 浙江大学学报(工学版), 2019, 53(5): 910-916.

Rong BIAN,Wen-juan LOU,Hang LI,Xia-shuang ZHAO,Li-gang ZHANG. Aerodynamic characteristics of steel tubular transmission tower in different flow fields. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 910-916.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/910

模型类型 模型编号 b/a $\phi $
单片桁架 1 ? 0.18
2 ? 0.12
3 ? 0.28
4 ? 0.33
塔身节段 5 1.0 0.18
6 1.0 0.12
7 1.0 0.28
8 1.0 0.33
9 1.5 0.18
10 2.0 0.18
表 1  塔身节段及单片桁架模型基本参数
图 1  塔身节段模型试验照片
图 2  节段模型宽高比俯视图
图 3  钢管输电塔节段模型测力风洞试验
图 4  风洞中竖向格栅实物图
图 5  均匀湍流场湍流度剖面
图 6  2类流场下单片桁架体型系数随来流风速的变化
图 7  2类流场下塔身节段体型系数随来流风速的变化
图 8  2类流场下背风面荷载降低系数随来流风速的变化
图 9  单片桁架体型系数随密实度变化
图 10  钢管塔塔身节段体型系数随密实度变化
$b/a$ ${C_{\rm{D}}^{(2)}}$试验值 中国规范(亚临界) 英国规范(亚临界)
${C_{\rm{D}}^{(2)}}$ 偏差 ${C_{\rm{D}}^{(2)}}$ 偏差
1.0 1.97 1.96 ?0.5% 1.73 ?12.2%
1.5 2.01 1.98 ?1.5% 1.73 ?12.6%
2.0 2.14 2.01 ?6.1% 1.74 ?18.7%
表 2  不同宽高比下塔身节段体型系数对比
图 11  钢管塔背风面荷载降低系数随密实度的变化
b/a η试验值 中国规范 英国规范(亚临界)
η 偏差 η 偏差
1.0 0.69 0.88 27.5% 0.57 ?17.4%
1.5 0.72 0.91 26.4% 0.58 ?19.4%
2.0 0.83 0.94 13.3% 0.59 ?28.9%
表 3  不同宽高比下钢管塔背风面荷载降低系数对比
b/a η
$ \phi$=0.1 $ \phi$=0.2 $ \phi$=0.3
1) 注:括号内为中国规范[14]的建议值.
1.0 0.90(1.00)1) 0.75(0.85) 0.70(0.69)
2.0 ? 0.85(0.92) ?
表 4  不同宽高比下钢管塔塔身节段背风面荷载降低系数建议值
1 邹良浩, 梁枢果, 邹垚, 等 格构式塔架风载体型系数的风洞试验研究[J]. 特种结构, 2008, 25 (5): 41- 43
ZOU Liang-hao, LIANG Shu-guo, ZOU Yao, et al Investigation on wind load shape coefficient of lattice tower by wind tunnel tests[J]. Special Structure, 2008, 25 (5): 41- 43
doi: 10.3969/j.issn.1001-3598.2008.05.013
2 程志军, 付国宏, 楼文娟, 等 高耸格构式塔架风荷载试验研究[J]. 实验力学, 2000, 15 (1): 51- 55
CHENG Zhi-jun, FU Guo-hong, LOU Wen-juan, et al Reasearch for the wind force on high-rise latticed tower[J]. Journal of Experimental Mechanics, 2000, 15 (1): 51- 55
doi: 10.3969/j.issn.1001-4888.2000.01.008
3 沈国辉, 项国通, 邢月龙, 等 2种风场下格构式圆钢塔的天平测力试验研究[J]. 浙江大学学报: 工学版, 2014, 48 (4): 704- 710
SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, et al Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 704- 710
4 楼文娟, 王东, 沈国辉, 等 角钢输电塔杆件风压及体型系数的风洞试验研究[J]. 华中科技大学学报: 自然科学版, 2013, 41 (4): 114- 118
LOU Wen-juan, WANG Dong, SHEN Guo-hui, et al Wind tunnel tests for wind load distribution and shape coefficient of angle-made-transmission towers[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (4): 114- 118
5 顾明, 郑远海, 张庆华 典型输电塔平均风荷载和响应研究[J]. 中国工程机械学报, 2008, 6 (1): 6- 12
GU Ming, ZHENG Yuan-hai, ZHANG Qing-hua Response analysis on mean wind force of typical power transmission towers[J]. Chinese Journal of Construction Machinery, 2008, 6 (1): 6- 12
doi: 10.3969/j.issn.1672-5581.2008.01.002
6 邓洪洲, 张建明, 帅群, 等 输电钢管塔体型系数风洞试验研究[J]. 电网技术, 2010, 34 (9): 190- 194
DENG Hong-zhou, ZHANG Jian-ming, SHUAI Qun, et al Wind tunnel investigation on pressure coefficient of steel tubular transmission tower[J]. Power System Technology, 2010, 34 (9): 190- 194
7 肖春云, 陈政清, 牛华伟, 等. 高压输电塔体型系数试验研究[C] // 第十四届全国结构风工程学术会议论文集. 北京: 中国土木工程学会, 2009: 401–404.
XIAO Chun-yun, CHEN Zheng-qing, NIU Hua-wei, et al. Experimental investigation on body shape coefficients of high voltage transmission tower [C] // The 14th National Conference on Structural Wind Engineering. Beijing: China Civil Engineering Society, 2009: 401–404.
8 CARRIL C F, ISYUMOV N, BRASIL R M L R F Experimental study of the wind forces on rectangular latticed communication towers with antennas[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (8): 1007- 1022
doi: 10.1016/S0167-6105(03)00049-7
9 杨风利, 张宏杰, 杨靖波, 等 高压输电铁塔塔身背风面风荷载遮挡效应研究[J]. 振动工程学报, 2016, 29 (2): 276- 283
YANG Feng-li, ZHANG Hong-jie, YANG Jing-bo, et al Shielding effects on the leeward side of high voltage transmission tower bodies under wind load[J]. Journal of Vibration Engineering, 2016, 29 (2): 276- 283
10 YANG F, YANG J, NIU H, et al Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140: 10- 18
doi: 10.1016/j.jweia.2015.01.012
11 张庆华, 顾明, 黄鹏 格构式塔架风力特性试验研究[J]. 振动与冲击, 2009, 28 (2): 1- 4
ZHANG Qing-hua, GU Ming, HUANG Peng Experimental study of wind force on latticed tower[J]. Journal of Vibration and Shock, 2009, 28 (2): 1- 4
doi: 10.3969/j.issn.1000-3835.2009.02.001
12 李加武, 林志兴, 项海帆 桥梁断面三分力系数的雷诺数效应[J]. 同济大学学报: 自然科学版, 2004, 32 (10): 1328- 1333
LI Jia-wu, LIN Zhi-xing, XIANG Hai-fan Reynolds number effect of mean force coefficient of two kinds of typical bridge deck section[J]. Journal of Tongji University: Natural Science, 2004, 32 (10): 1328- 1333
13 顾明, 王新荣 工程结构雷诺数效应的研究进展[J]. 同济大学学报: 自然科学版, 2013, 41 (7): 961- 969
GU Ming, Wang Xin-rong Research progress of Reynolds number effect of engineering structures[J]. Journal of Tongji University: Natural Science, 2013, 41 (7): 961- 969
14 中国能源局. 架空输电线路钢管塔设计技术规定: DL/T 5254—2010 [S]. 北京: 中国电力出版社, 2011: 17–19.
15 Japanese Electrotechnical Committee. Design standards on structures for transmissions: JEC-127–1979 [S]. Tokyo: Electrical College, 1979: 36–40.
16 British Standards Institution. Lattice tower and masts-Part1: code of practice for loading: BS 8100—1986 [S]. London: British Standards Institution, 2005: 21–29.
17 ZHANG H, MELBOURNE W H Interference between two circular cylinders in tandem in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41 (1): 589- 600
[1] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9): 1631-1637.
[2] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[3] 汪小娣,沈金,楼文娟. 高层建筑边角凹凸对体型系数分布的影响[J]. J4, 2012, 46(1): 20-26.
[4] 袁行飞,吕晓东. 兆瓦级太阳能热气流发电站风荷载的数值模拟[J]. J4, 2011, 45(1): 99-105.
[5] 沈国辉 孙炳楠 楼文娟. 复杂体型高层建筑单体和双塔时的风荷载[J]. J4, 2005, 39(8): 1229-1233.
[6] 陈水福 焦燏烽. 低层四坡屋面房屋表面风压的数值模拟[J]. J4, 2005, 39(11): 1653-1657.