Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2102-2109    DOI: 10.3785/j.issn.1008-973X.2019.11.007
机械工程     
Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证
向羽(),张树哲,李俊峰,魏正英*(),杨理想,姜立昊
西安交通大学 机械制造系统工程国家重点实验室,陕西 西安 710049
Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V
Yu XIANG(),Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI*(),Li-xiang YANG,Li-hao JIANG
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(1629 KB)   HTML
摘要:

对于Ti6Al4V材料的激光选区熔化(SLM)成形工艺,基于离散元方法(DEM)建立粉末颗粒随机分布的三维介观模型.采用流体体积法(VOF)对SLM成形过程的三维自由表面进行动态追踪;考虑TC4颗粒随机分布的粉床、随温度呈非线性变化的热物性参数、熔池自由液面演化、由温度梯度引起的表面张力以及蒸发作用;通过数值模拟研究激光与粉末颗粒相互作用过程中的传热、熔化、流动、凝固等过程. 结果表明,由温度梯度及表面张力梯度产生的马兰戈尼对流是影响熔池内部传热传质和熔池三维形貌的主要因素;线能量密度(LED)与马兰戈尼对流的强度呈正相关,当LED=92.9~183.0 J/m时,单道表面质量较优. 通过单道成形实验对熔池与熔道的三维尺寸与形貌进行观察分析,有效验证了数值模拟的正确性.

关键词: 激光选区熔化Ti6Al4V单道数值模拟线能量密度    
Abstract:

For selective laser melting (SLM) forming of Ti6Al4V, a three-dimensional (3D) mesoscopic model of random distribution of powder particles was established based on the discrete element method (DEM). The volume of fluid method (VOF) was used to track the 3D dynamic free surface in SLM forming process. Various factors were considered in the numerical model, such as the TC4 powder bed with randomly distributed particles, the thermophysical parameters changing nonlinearly with temperature, the free surface evolution of the molten pool, the surface tension caused by temperature gradients, and the evaporation effect. The heat transfer, melting, flow and solidification in the interaction between laser and powder particles were studied according to the numerical simulation. Results show that the Marangoni convection induced by temperature gradient and surface tension gradient is the main factor affecting the heat and mass transfer within the melt pool and the 3D morphology of the melt pool. The line energy density (LED) is positively correlated with the Marangoni effect. The quality of single track surface was good when the optimized LED ranged from 92.9 J/m to 183.0 J/m. The three-dimensional size and the morphology of the molten pool and the molten track were observed and analyzed by the single track forming experiment, by which the numerical results were validated.

Key words: selective laser melting    Ti6Al4V    single track    numerical simulation    line energy density
收稿日期: 2018-06-08 出版日期: 2019-11-21
CLC:  TN 249  
基金资助: 科学挑战专题资助项目(TZ2018006-0301-01);2017年广东省省级科技计划资助项目(2017B090911015);东莞理工学院高层次人才(创新团队)研究资助项目(KCYCXPT2016003)
通讯作者: 魏正英     E-mail: b1ttergourd@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
作者简介: 向羽(1994—),男,硕士生,从事金属增材制造研究. orcid.org/0000-0003-2293-7147. E-mail: b1ttergourd@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
向羽
张树哲
李俊峰
魏正英
杨理想
姜立昊

引用本文:

向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.

Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2102

图 1  随机分布的Ti6Al4V粉床模型
图 2  SLM熔池界面的热物理氛围
图 3  Ti6Al4V的热物性参数
参数 数值
Ti6Al4V 固相线Ts/K 1 877
Ti6Al4V液相线Tl/K 1 923
Tlv/K 3 313
Llv/(J·kg?1) 8.88×106
T0/K 293.15
P/W 220~380(间隔20 W)
扫描速度v/(mm·s?1) 1 200~3 800 (间隔200 mm/s)
激光光斑直径d/μm 70
α 0.68[19]
${\sigma _{\rm{s}}}$/(W·m?2·K?4) 5.67×10?8
hc/(W·m?2·K?1) 60
R/(J·mol?1·K?1) 8.314 472
εr 0.4
M/(kg·mol?1) 46.58
保护气氛 氩气
p0/Pa 1 500
表 1  数值模拟采用的材料参数和工艺条件
图 4  熔池的熔化和凝固的演变
图 5  熔道温度场与速度场在4个时刻的演化过程
图 6  不同激光能量下激光扫描速度对单道的温度分布和表面的影响
图 7  探测点不同时刻的温度分布曲线和冷却速率
图 8  沿激光扫描方向的熔池表面张力
图 9  Ti6Al4V粉末的SEM形貌
元素 wB/% 元素 wB/%
Ti 余量 C 0.07
Al 6.00 O 0.10
V 4.00 H 0.01
Fe 0.20 N 0.03
表 2  Ti6Al4V粉末化学组分
图 10  Ti6Al4V单道的典型表面形貌
图 11  熔池形貌的实验和数值结果
图 12  Ti6Al4V单道成形工艺窗口
1 WU S, LU Y, HUANG T, et al Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672 (5): 643- 652
2 ZHAO Z, CHEN J, ZHAO X, et al Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46 (7): 1792- 1797
doi: 10.1016/S1875-5372(17)30168-6
3 LI H, HUANG B, SUN F, et al Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42: 209- 212
4 李富长, 宋祖铭, 杨典军 钛合金加工工艺技术研究[J]. 新技术新工艺, 2010, (5): 66- 69
LI Fu-chang, SONG Zu-ming, YANG Dian-jun Research on titanium alloy machining technology[J]. New Technology and New Process, 2010, (5): 66- 69
doi: 10.3969/j.issn.1003-5311.2010.05.022
5 巩水利, 锁红波, 李怀学 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 433 (13): 66- 71
GONG Shui-li, SUO Hong-bo, LI Huai-xue Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, 433 (13): 66- 71
doi: 10.3969/j.issn.1671-833X.2013.13.012
6 王华明 高能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013, 3: 5- 7
WANG Hua-ming High-performance metal component manufacturing technology opens a new chapter in national defense[J]. Defense Manufacturing Technology, 2013, 3: 5- 7
7 卢秉恒, 李涤尘 增才制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42 (4): 1- 4
LU Bing-heng, LI Di-chen Development of the additive manufacturing (3D printing) technology[J]. Machinery Manufacturing and Automation, 2013, 42 (4): 1- 4
doi: 10.3969/j.issn.1671-5276.2013.04.001
8 李俊峰, 魏正英, 卢秉恒 钛及钛合金激光选区熔化技术的研究进展[J]. 激光与光电子学进展, 2018, 55 (1): 011403
LI Jun-feng, WEI Zheng-ying, LU Bing-heng Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser and Optoelectronics Progress, 2018, 55 (1): 011403
9 K?RNER C, ATTAR E, HEINAL P Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211 (6): 978- 987
doi: 10.1016/j.jmatprotec.2010.12.016
10 CHIUMENTI M, NEIVA E, SALSI E, et al Numerical modelling and experimental validation in selective laser melting[J]. Additive Manufacturing, 2017, 18: 171- 185
doi: 10.1016/j.addma.2017.09.002
11 YAN W, GE W, QIAN Y, et al Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134: 324- 333
doi: 10.1016/j.actamat.2017.05.061
12 CHEN Z, XIANG Y, WEI Z, et al Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification[J]. Applied Physics A, 2018, 124 (4): 313
doi: 10.1007/s00339-018-1737-8
13 VOLLER V R, PRAKASH C A fixed grid numerical modeling methodology for convection diffusion mushy region phase change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30 (8): 1709- 1719
doi: 10.1016/0017-9310(87)90317-6
14 WEI P, WEI Z, CHEN Z, et al The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior [J]. Applied Surface Science, 2017, 408 (30): 38- 50
15 HIRT C W, NICHOLS B D Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201- 225
doi: 10.1016/0021-9991(81)90145-5
16 DAI D, GU D Influence of thermodynamics within melt pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites [J]. International Journal of Machine Tools Manufacturing, 2016, 100: 14- 24
doi: 10.1016/j.ijmachtools.2015.10.004
17 SEMAK V, MATSUNAWA A The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1999, 30 (18): 2541
18 KLASSEN A, SCHAROWSKY T, K?RNER C Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods[J]. Journal of Physics D: Applied Physics, 2014, 47 (27): 275303
doi: 10.1088/0022-3727/47/27/275303
19 RUBENCHIK A, WU S, MITCHELL S, et al Direct measurements of temperature-dependent laser absorptivity of metal powders[J]. Applied Optics, 2015, 54 (24): 7230- 7233
doi: 10.1364/AO.54.007230
20 GU D, MEINERS W, WISSENBACH K, et al Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Review, 2012, 57 (3): 133- 164
doi: 10.1179/1743280411Y.0000000014
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[4] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[5] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[6] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[7] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[8] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[9] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[10] 季宪泰,文世峰,魏青松,周燕,陈志平. 淬火处理对激光选区熔化成形S136组织与性能的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 664-670.
[11] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[12] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[13] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.
[14] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[15] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.