能源工程、机械工程 |
|
|
|
|
湍流火焰切向应变率的低维近似模型 |
任嘉豪( ),王海鸥*( ),邢江宽,罗坤,樊建人 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Lower-dimensional approximation models of tangential strain rate of turbulent flames |
Jia-hao REN( ),Hai-ou WANG*( ),Jiang-kuan XING,Kun LUO,Jian-ren FAN |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.013
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1128
|
1 |
DRISCOLL J F, CHEN J H, SKIBA A W, et al Premixed flames subjected to extreme turbulence: some questions and recent answers[J]. Progress in Energy and Combustion Science, 2020, 76 (1): 100802
|
2 |
WANG J, ZHANG M, HUANG Z, et al Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure[J]. Combustion and Flame, 2013, 160 (11): 2434- 2441
doi: 10.1016/j.combustflame.2013.06.008
|
3 |
WANG H, HAWKES E R, CHEN J H Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame[J]. Physics of Fluids, 2016, 28 (9): 095107
doi: 10.1063/1.4962501
|
4 |
WANG H, HAWKES E R, CHEN J H A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame [J]. Combustion and Flame, 2017, 180 (6): 110- 123
|
5 |
WANG H, HAWKES E R, CHEN J H, et al Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame: an analysis of flame stretch and flame thickening[J]. Journal of Fluid Mechanics, 2017, 815 (2): 511- 536
|
6 |
ZHANG Q, SHANBHOGUE S J, LIEUWEN T, et al Strain characteristics near the flame attachment point in a swirling flow[J]. Combustion Science and Technology, 2011, 183 (7): 665- 685
doi: 10.1080/00102202.2010.537288
|
7 |
STEINBERG A M, DRISCOLL J F Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics[J]. Combustion and Flame, 2009, 156 (12): 2285- 2306
doi: 10.1016/j.combustflame.2009.06.024
|
8 |
DONBAR J M, DRISCOLL J F, CARTER C D Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames[J]. Combustion and Flame, 2001, 125 (4): 1239- 1257
doi: 10.1016/S0010-2180(01)00246-2
|
9 |
KARPETIS A N, BARLOW R S Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames[J]. Proceedings of the Combustion Institute, 2005, 30 (1): 665- 672
doi: 10.1016/j.proci.2004.08.222
|
10 |
KARPETIS A N, BARLOW R S Measurements of scalar dissipation in a turbulent piloted methane/air jet flame[J]. Proceedings of the Combustion Institute, 2002, 29 (2): 1929- 1936
doi: 10.1016/S1540-7489(02)80234-6
|
11 |
ZHANG M, WANG J, JIN W, et al Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame[J]. Combustion and Flame, 2015, 162 (5): 2087- 2097
doi: 10.1016/j.combustflame.2015.01.007
|
12 |
HAWKES E R, SANKARAN R, CHEN J H, et al An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1455- 1463
doi: 10.1016/j.proci.2008.06.122
|
13 |
VEYNANTE D, LODATO G, DOMINGO P, et al Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion[J]. Experiments in Fluids, 2010, 49 (1): 267- 278
doi: 10.1007/s00348-010-0851-y
|
14 |
HAWKES E R, SANKARAN R, CHEN J H Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1447- 1454
doi: 10.1016/j.proci.2010.06.019
|
15 |
CHAKRABORTY N, KOLLA H, SANKARAN R, et al Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 1151- 1162
doi: 10.1016/j.proci.2012.06.040
|
16 |
CHAKRABORTY N, HARTUNG G, KATRAGADDA M, et al Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data[J]. Combustion and Flame, 2011, 158 (7): 1372- 1390
doi: 10.1016/j.combustflame.2010.11.014
|
17 |
PETERS N. Turbulent combustion [M]. Cambridge: Cambridge University Press, 2001.
|
18 |
CHEN J H, CHOUDHARY A, DE SUPINSKI B, et al Terascale direct numerical simulations of turbulent combustion using S3D[J]. Computational Science and Discovery, 2009, 2 (1): 015001
doi: 10.1088/1749-4699/2/1/015001
|
19 |
CHAKRABORTY N, CANT R S Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime[J]. Physics of Fluids, 2005, 17 (10): 105105
doi: 10.1063/1.2084231
|
20 |
RUMELHART D E, HINTON G E, WILLIAMS R J Learning representations by back-propagating errors[J]. Nature, 1986, 323 (6088): 533- 536
doi: 10.1038/323533a0
|
21 |
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
|
22 |
BREIMAN L Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32
doi: 10.1023/A:1010933404324
|
23 |
XING J, LUO K, PITSCH H, et al Predicting kinetic parameters for coal devolatilization by means of artificial neural networks[J]. Proceedings of the Combustion Institute, 2018, 37 (3): 1- 8
|
24 |
WANG Z, LUO K, LI D, et al Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30 (12): 125101
doi: 10.1063/1.5054835
|
25 |
XING J, WANG H, LUO K, et al Predictive single-step kinetic model of biomass devolatilization for CFD applications: a comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)[J]. Renewable Energy, 2019, 136 (6): 104- 114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|