生物医学工程 |
|
|
|
|
机器学习算法诊断PET/CT纵膈淋巴结性能评估 |
王洪凯1, 陈中华1, 周纵苇2, 李迎辞3, 陆佩欧3, 王文志3, 刘宛予4, 于丽娟3 |
1. 大连理工大学 生物医学工程系, 辽宁 大连 116024;
2. 亚利桑那州立大学 生物信息学院, 斯科茨代尔 85259;
3. 哈尔滨医科大学附属肿瘤医院, 黑龙江 哈尔滨 150081;
4. 哈尔滨工业大学 HIT-INSA中法生物医学图像研究中心, 黑龙江 哈尔滨 150001 |
|
Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images |
WANG Hong-kai1, CHEN Zhong-hua1, ZHOU Zong-wei2, LI Ying-ci3, LU Pei-ou3, WANG Wen-zhi3, LIU Wan-yu4, YU Li-juan3 |
1. Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China;
2. Department of Biomedical Informatics and the College of Health Solutions, Arizona State University, Scottsdale 85259, US;
3. Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150081, China;
4. HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
王洪凯, 陈中华, 周纵苇, 李迎辞, 陆佩欧, 王文志, 刘宛予, 于丽娟. 机器学习算法诊断PET/CT纵膈淋巴结性能评估[J]. 浙江大学学报(工学版), 2018, 52(4): 788-797.
WANG Hong-kai, CHEN Zhong-hua, ZHOU Zong-wei, LI Ying-ci, LU Pei-ou, WANG Wen-zhi, LIU Wan-yu, YU Li-juan. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 788-797.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.024
或
http://www.zjujournals.com/eng/CN/Y2018/V52/I4/788
|
[1] 齐守良, 岳勇, 辛军, 等. 面向临床肿瘤诊疗决策的多模态医学影像融合[J]. 中国生物医学工程学报, 2013, 32(3):356-362. QI Shou-liang, YUE Yong, XIN Jun, et al. Fusion of multi-modality medical imaging information for clinical decision in tumor diagnosis and treatment[J]. Chinese Journal of Biomedical Engineering, 2013, 32(3):356-362.
[2] MCFIELD D, BAUER T. A review of noninvasive staging of the mediastinum for non-small cell lung carcinoma[J]. Surgical Oncology Clinics of North America, 2011, 20(4):681-690.
[3] SILVESTRI G A, GOULD M K, MARGOLIS M L, et al. Noninvasive staging of non-small cell lung cancer:ACCP evidenced-based clinical practice guidelines (2nd edition)[J]. Chest, 2007, 132(3):178S-201S.
[4] BRODERICK S R, MEYERS B F. PET staging of mediastinal lymph nodes in thoracic oncology[J]. Thoracic Surgery Clinics, 2012, 22(2):161-166.
[5] KIM S K, ALLEN-AUERBACH M, GOLDIN J, et al. Accuracy of PET/CT in characterization of solitary pulmonary lesions[J]. Journal of Nuclear Medicine, 2007, 48(2):214-220.
[6] LI Xiao-lin, ZHANG Hua-qi, XING Li-gang, et al. Mediastinal lymph nodes staging by 18F-FDG PET/CT for early stage non-small cell lung cancer:a multicenter study[J]. Radiotherapy and Oncology, 2012, 102(2):246-250.
[7] SCHMIDT-HANSEN M, BALDWIN D R, HASLER E, et al. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer[J]. Cochrane Database of Systematic Reviews, 2014, 11(11):CD009519.
[8] DE-LEYN P, VANSTEENKISTE J, CUYPERS P, et al. Role of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scan[J]. European Journal of Cardio-Thoracic Surgery, 1997, 12(5):706-712.
[9] ZHENG Yuan-da, SUN Xiao-jiang, WANG Jian, et al. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer[J]. Oncology Letters, 2014, 7(4):1015-1020.
[10] EDET-SANSON A, DUBRAY B, DOYEUX K, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC)[J]. Radiotherapy and Oncology, 2012, 102(2):251-257.
[11] WANG J, WELCH K, WANG L, et al. Negative predictive value of positron emission tomography and computed tomography for stage T1-2N0 non-small-cell lung cancer:a meta-analysis[J]. Clinical Lung Cancer, 2012, 13(2):81-89.
[12] LIAO Chi-ying, CHEN Jin-hua, LIANG Jian, et al. Meta-analysis study of lymph node staging by 18 F-FDG PET/CT scan in non-small cell lung cancer:comparison of TB and non-TB endemic regions[J]. European Journal of Radiology, 2012, 81(11):3518-3523.
[13] AMBROSINI V, FANTI S, CHENGAZI V U, et al. Diagnostic accuracy of FDG PET/CT in mediastinal lymph nodes from lung cancer[J]. European Journal of Radiology, 2014, 83(8):1301-1302.
[14] SILVESTRI G A, GONZALEZ A V, JANTZ M A, et al. Methods for staging non-small cell lung cancer:diagnosis and management of lung cancer, 3rd ed:American College of Chest Physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5):e211S-250S.
[15] 王伟胜, 骆嘉伟, 林红利. 医学图像计算机辅助诊断数据平台研究[J]. 中国生物医学工程学报, 2013, 32(1):105-108. WANG Wei-sheng, LUO Jia-wei, LIN Hong-li. Computer-aided diagnosis data platform by using medical imaging[J]. Chinese Journal of Biomedical Engineering, 2013, 32(1):105-108.
[16] WAUGH S A, PURDIE C A, JORDAN L B, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer[J]. European Radiology, 2016, 26(2):322-330.
[17] JACOBS C, VAN RIKXOORT E M, MURPHY K, et al. Computer-aided detection of pulmonary nodules:a comparative study using the public LIDC/IDRI database[J]. European Radiology, 2016, 26(7):2139-2147.
[18] PARK H B, LEE B K, SHIN S, et al. Clinical feasibility of 3D automated coronary atherosclerotic plaque quantification algorithm on coronary computed tomography angiography:comparison with intravascular ultrasound[J]. European Radiology, 2015, 25(10):3073-3083.
[19] BENNDORF M, KOTTER E, LANGER M, et al. Development of an online, publicly accessible naive Bayesian decision support tool for mammographic mass lesions based on the American College of Radiology (ACR) BI-RADS lexicon[J]. European Radiology, 2015, 25(6):1768-1775.
[20] FEULNER J, ZHOU S K, HAMMON M, et al. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior[J]. Medical Image Analysis, 2013, 17(2):254-270.
[21] ROTH H, LU Le, LIU Jia-min, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation[J]. IEEE Transactions on Medical Imaging, 2016, 35(5):1170-1181.
[22] KERHET A, SMALL C, QUON H, et al. Application of machine learning methodology for PET-based definition of lung cancer[J]. Radiotherapy and Oncology, 2009, 92(1):41-47.
[23] KERHET A, SMALL C, QUON H, et al. Segmentation of lung tumours in positron emission tomography scans:a machine learning approach[C]//Conference on Artificial Intelligence in Medicine:Artificial Intelligence in Medicine.[S.l.]:Springer, 2009:146-155.
[24] CHEEBSUMON P, BOELLAARD R, DE RUYSSCHER D, et al. Assessment of tumour size in PET/CT lung cancer studies:PET-and CT-based methods compared to pathology[J]. Ejnmmi Research, 2012, 2(1):1-9.
[25] LAMBIN P, DEHING-OBERIJE C, PERSOON L, et al. Machine learning based clinical research:the example of lung cancer[J]. Medical Physics, 2008, 35(6):2900.
[26] GAO Xuan, CHU Chun-yu, LI Ying-ci, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer[J]. European Journal of Radiology, 2015, 84(2):312-317.
[27] ZHOU S, CHENG Y, TAMURA S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images[J].Biomedical Signal Processing and Control, 2014, 13(5):62-70.
[28] SHI C, CHENG Y, WANG J, et al. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation[J].Medical Image Analysis, 2017, 5(38):30-49.
[29] LIU J, HOFFMAN J, ZHAO J, et al. Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest[J].Medical Physics, 2016, 43(7):4362-4374.
[30] VALLIERES E, SHEPHERD F A, CROWLEY J, et al. The IASLC lung cancer staging project:proposals regarding the relevance of TNM in the pathologic staging of small cell lung cancer in the forthcoming (seventh) edition of the TNM classification for lung cancer[J]. Journal of Thoracic Oncology, 2009, 4(9):1049-1059.
[31] FRANCIS T. Machine learning:an algorithmic perspective, second edition (eBook)-Taylor&Francis[EB/OL]. https://www.crcpress.com/Machine-Learning-An-Algorithmic-Perspective-Second-Edition/Marsland/p/book/9781466583283. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|