电气工程 |
|
|
|
|
采用极限梯度提升算法的电力系统电压稳定裕度预测 |
王慧芳*( ),张晨宇 |
浙江大学 电气工程学院,浙江 杭州 310027 |
|
Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm |
Hui-fang WANG*( ),Chen-yu ZHANG |
Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
1 |
王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003.
|
2 |
RODRIGUES A B, PRADA R B, SILVA M D G D Voltage stability probabilistic assessment in composite systems: modeling unsolvability and controllability loss[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1575- 1588
doi: 10.1109/TPWRS.2009.2039234
|
3 |
AJJARAPU V, CHRISTY C The continuation power flow: a tool for steady state voltage stability analysis[J]. IEEE Transactions on Power Systems, 1992, 7 (1): 416- 423
doi: 10.1109/59.141737
|
4 |
杨滢, 叶琳, 倪秋龙 基于PSS/E的浙江电网静态电压稳定性分析[J]. 浙江电力, 2009, 28 (6): 9- 11 YANG Ying, YE Lin, NI Qiu-long Analysis of static voltage stability of Zhejiang electric grid based on PSS/E[J]. Zhejiang Electric Power, 2009, 28 (6): 9- 11
doi: 10.3969/j.issn.1007-1881.2009.06.003
|
5 |
吴杰康, 邓松, 梁志武, 等 基于模糊神经网络决策树的电压稳定性评估[J]. 电网技术, 2007, 32 (14): 25- 30 WU Jie-kang, DENG Song, LIANG Zhi-wu, et al Evaluation of power system voltage stability based on fuzzy neural network decision tree[J]. Power System Technology, 2007, 32 (14): 25- 30
|
6 |
王皓, 孙宏斌, 张伯明 基于混合互信息的特征选择方法及其在静态电压稳定评估中的应用[J]. 中国电机工程学报, 2006, 26 (7): 77- 81 WANG Hao, SUN Hong-bin, ZHANG Bo-ming Hybrid mutual information based feature selection method as appied to static voltage stability assessment in power systems[J]. Proceedings of the CSEE, 2006, 26 (7): 77- 81
doi: 10.3321/j.issn:0258-8013.2006.07.015
|
7 |
FAN Y, LIU S, QIN L, et al A novel online estimation scheme for static voltage stability margin based on relationships exploration in a large data set[J]. IEEE Transactions on Power Systems, 2015, 30 (3): 1380- 1393
doi: 10.1109/TPWRS.2014.2349531
|
8 |
DEVARAJ D, ROSELYN J P On-line voltage stability assessment using radial basis function network model with reduced input features[J]. International Journal of Electrical Power and Energy Systems, 2011, 33 (9): 1550- 1555
|
9 |
崔峰, 齐占庆, 姜萌 基于模糊神经网络的电力系统电压稳定评估[J]. 电力系统保护与控制, 2009, 37 (11): 40- 44 CUI Feng, QI Zhan-qing, JIANG Meng Fuzzy neural network based voltage stability evaluation of power systems[J]. Power System Protection and Control, 2009, 37 (11): 40- 44
doi: 10.3969/j.issn.1674-3415.2009.11.010
|
10 |
刘昇, 徐政, 华文 用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络[J]. 中国电机工程学报, 2014, (34): 6032- 6041 LIU Sheng, XU Zheng, HUA Wen A SIPSS-Lasso-BP network for online forecasting static voltage stability[J]. Proceedings of the CSEE, 2014, (34): 6032- 6041
|
11 |
ZHOU D Q, ANNAKKAGE U D, RAJAPAKSE A D Online monitoring of voltage stability margin using an artificial neural network[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1566- 1574
doi: 10.1109/TPWRS.2009.2038059
|
12 |
FAN Y, LI X, ZHANG P Real-time static voltage stability assessment in large-scale power systems based on maximum-relevance minimum-redundancy ensemble approach[J]. IEEE Access, 2017, 5: 27281- 27291
doi: 10.1109/ACCESS.2017.2758819
|
13 |
MALBASA V, ZHENG C, CHEN P C, et al Voltage stability prediction using active machine learning[J]. IEEE Transactions on Smart Grid, 2017, 8 (6): 3117- 3124
doi: 10.1109/TSG.2017.2693394
|
14 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: SIGKDD. San Francisco: ACM, 2016: 785-794.
|
15 |
WANG H, ZHANG C, LIN D et al An artificial intelligence-based method for evaluating power grid node importance using network embedding and support vector regression[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (6): 816- 828
doi: 10.1631/FITEE.1800146
|
16 |
ZIMMERMAN, R D, MURILLO-SANCHEZ, C. E., THOMAS, R. J Matpower: steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26 (1): 12- 19
doi: 10.1109/TPWRS.2010.2051168
|
17 |
PEDREGOSA F, GRAMFORT A, MICHEL V, et al Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2016, 12 (10): 2825- 2830
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|