Please wait a minute...
浙江大学学报(工学版)
计算机技术﹑电信技术     
基于正则化风险最小化的目标计数
吴鹏洲,于慧敏,曾雄
浙江大学 信息与电子工程学系,浙江 杭州 310027
Object counting based on regularized risk minimization
WU Peng-zhou, YU Hui-min, ZENG Xiong
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1608 KB)   HTML
摘要:

针对现有研究对目标空间信息的普遍忽视及其对高密度群体精确计数的困难,提出对输入图像估计一个密度函数.通过该函数在任意图像区域上的积分得出该区域中的目标个数.经过数学推导,得到密度函数的参数化模型,分析特征向量需要满足的条件以及加入图像分割对结果的影响. 由正则化风险最小化原理求取密度函数模型的参数,将密度函数的经验风险最小化问题简化为一个线性规划问题. 实验表明,该方法只需少量图像进行训练, 就可以准确地估计测试图像的目标数目. 对于高密度群体,该方法能够给出目标计数, 而不仅是密度等级估计.

Abstract:

Current studies of object counting commonly ignore the spatial information of objects and encounter difficulties when dealing with high density object groups. An object counting approach was presented which estimated a density function for every input image, whose integral over any image region gives the count within that region. A parametric model of density function was built by mathematical derivation. The conditions that feature vectors should satisfy and the effects of image segmentation were analyzed. The parameters in the model of density function were estimated by the principle of regularized risk minimization, and the density function empirical risk minimization can be boiled down to a linear program. Experimental results show that the method can accurately estimate the object counts for testing images with only a few training images. For high density object groups, the approach also gives counts, not only density levels.

出版日期: 2014-08-04
:  TN 911  
基金资助:

国家“973”重点基础研究发展规划资助项目(2012CB316400)

通讯作者: 于慧敏, 男, 教授     E-mail: yhm2005@zju.edu.cn
作者简介: 吴鹏洲(1988-), 男, 硕士生, 从事计算机视觉、图像处理的研究. E-mail: 21031130@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴鹏洲,于慧敏,曾雄. 基于正则化风险最小化的目标计数[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.012.

WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.012        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1226

1] LIN S F, CHEN J Y, CHAO H X. Estimation of number of people in crowded scenes using perspective transformation [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,  2001, 31(6): 645-654.
[2] DESCOMBES X, MINLOS R, ZHIZHINA E. Object extraction using a stochastic birth-and-death dynamics in continuum [J]. Journal of Mathematical Imaging and Vision, 2009, 33(3): 347-359.
[3] DAVIES A C, YIN J H, VELASTIN S A. Crowd monitoring using image processing [J]. Electronics and Communication Engineering Journal, 1995, 7(1):37-47.
[4] PARAGIOS N, RAMESH V. A MRF-based approach for real-time subway monitoring [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: I-1034-I-1040.
[5] MA R, LI L, HUANG W, et al. On pixel count based crowd density estimation for visual surveillance [C]∥Proceedings of IEEE Conference on Cybernetics and Intelligent System. [S.l.]: IEEE, 2004: 170-173.
[6] VELASTIN S A, YIN J H, DAVIES A C, et al. Automated measurement of crowd density and motion using image processing [C]∥Proceedings of IET International Conference on Road Traffic Monitoring and Control. [S.l.]: IET, 1994: 127-132.
[7] REGAZZONI C S, TESEI A. Distributed data fusion for real-time crowding estimation [J]. Signal Processing, 1996, 53(1): 47-63.
[8] CHO S Y, CHOW T W S, LEUNG C T. A neural-based crowd estimation by hybrid global learning algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1999, 29(4): 535-541.
[9] MARANA A, DA COSTA L, LOTUFO R, et al. On the efficacy of texture analysis for crowd monitoring [C]∥Proceedings of IEEE International Symposium on Computer Graphics, Image Processing, and Vision. [S.l.]: IEEE, 1998: 354-361.
[10] LI W, WU X, MATSUMOTO K, et al. Crowd density estimation: an improved approach [C]∥Proceedings of IEEE International Conference on Signal Processing. [S.l.]: IEEE, 2010: 1213-1216.
[11] VERONA V V, MARANA A N. Wavelet packet analysis for crowd density estimation [C]∥Proceedings of the IASTED International Symposia on Applied Informatics. Innsbruck: [s.n.], 2001.
[12] RAHMALAN H, NIXON M, CARTER J. On crowd density estimation for surveillance [C]∥Proceedings of The Institution of Engineering and Technology Conference on Crime and Security. [S.l.]: IET, 2006: 540-545.
[13] WU X Y, LIANG G Y, LEE K K, et al. Crowd density estimation using texture analysis and learning [C]∥ Proceedings of IEEE International Conference on Robotics and Biomimetics. [S.l.]: IEEE, 2006: 214-219.
[14] CHAN A B, LIANG Z, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 17.
[15] CHAN A B, VASCONCELOS N. Bayesian Poisson regression for crowd counting [C]∥Proceedings of IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2009: 545-551.
[16] RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features [C]∥Proceedings of IEEE Conference on Digital Image Computing: Techniques and Applications. [S.l.]: IEEE, 2009: 81-88.
[17] SCHREIBER D, RAUTER M. A CPU-GPU hybrid people counting system for real-world airport scenarios using arbitrary oblique view cameras [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2012: 83-88.
[18] MURPHY K P. Machine learning: a probabilistic perspective [M]. [S.l.]: MIT, 2012: 204-207.
[19] LEMPITSKY V, ZISSERMAN A. Learning to count objects in images [C]∥Proceedings of Neural Information Processing Systems (NIPS). Vancouver: Curran Associates Inc,2010.
[20] BENTLEY J L. Programming pearls: perspective on performance [J]. Communications of the ACM, 1984, 27(11): 1087-1092.
[21] BENTLEY J L. Programming pearls: algorithm design techniques [J]. Communications of the ACM, 1984, 27(9): 865-871.
[22] SRA S, NOWOZIN S, WRIGHT S J. Optimization for machine learning [M]. [S.l.]: MIT, 2012: 185-196.
[23] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 

[1] 吴晨曦, 张旻, 王可人. 基于二级嵌套阵列的宽频段欠定波达方向估计[J]. 浙江大学学报(工学版), 2017, 51(5): 1016-1023.
[2] 谢罗峰, 徐慧宁, 黄沁元, 赵越, 殷国富. 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报(工学版), 2017, 51(1): 184-191.
[3] 王志, 朱世强, 卜琰, 郭振民. 改进导向滤波器立体匹配算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2262-2269.
[4] 于慧敏, 曾雄. 结合排序向量SVM的视频跟踪[J]. 浙江大学学报(工学版), 2015, 49(6): 1015-1021.
[5] 陈阔, 冯华君, 徐之海, 李奇, 陈跃庭. 细节保持的快速曝光融合[J]. 浙江大学学报(工学版), 2015, 49(6): 1048-1054.
[6] 江燊煜,陈阔,徐之海,冯华君,李奇,陈跃庭. 基于曝光适度评价的多曝光图像融合方法[J]. 浙江大学学报(工学版), 2015, 49(3): 470-475.
[7] 朱株,刘济林. 基于马尔科夫随机场的三维激光雷达路面实时分割[J]. 浙江大学学报(工学版), 2015, 49(3): 464-469.
[8] 童基均, 张光磊, 蔡强, 简锦明,郭希山. 阈值随机共振及其在低质量浓度气体检测中的应用[J]. 浙江大学学报(工学版), 2015, 49(1): 15-19.
[9] 李江,赵雅琼,包晔华. 基于混沌和替代数据法的中风病人声音分析[J]. 浙江大学学报(工学版), 2015, 49(1): 36-41.
[10] 潘能杰,于慧敏. 边缘加强型的彩色空间最稳极值区域[J]. 浙江大学学报(工学版), 2014, 48(7): 1241-1247.
[11] 岳克强, 孙玲玲, 游彬, 楼立恒. 基于欠定盲分离的并行识别防碰撞算法[J]. 浙江大学学报(工学版), 2014, 48(5): 865-870.
[12] 项楠, 赵航芳, 宫先仪. 非寻复域状态-空间滤波[J]. J4, 2014, 48(4): 727-733.
[13] 杨力, 朱株, 刘济林. 一种嵌入式汽车鸟瞰全景图拼接算法[J]. J4, 2014, 48(2): 292-296.
[14] 刘凤霞, 潘翔, 宫先仪. 螺旋线阵匹配场三维定位[J]. J4, 2013, 47(1): 62-69.
[15] 刘志坤, 刘忠, 付学志, 宁小玲. 改进的变步长自适应滤波及Eckart加权抑噪算法[J]. J4, 2012, 46(6): 1014-1020.