Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 598-606, 612    DOI: 10.3785/j.issn.1008-973X.2022.03.019
土木工程、水利工程     
雨季降水对浙江井头山深埋土遗址地下水位的影响
唐晓武1,2(),费敏亮1,2,俞悦1,2,梁家馨1,2,孙国平3
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
3. 浙江省文物考古研究所,浙江 杭州 310014
Influence of rainy season precipitation on groundwater level of Jingtoushan deep-buried earthen site in Zhejiang Province
Xiao-wu TANG1,2(),Min-liang FEI1,2,Yue YU1,2,Jia-xin LIANG1,2,Guo-ping SUN3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
3. Zhejiang Institute of Cultural Relics and Archaeology, Hangzhou 310014, China
 全文: PDF(1544 KB)   HTML
摘要:

以中国沿海埋藏最深、年代最早的典型海岸贝丘遗址——井头山遗址为例,对2018年6月至2020年11月处于发掘阶段的考古基坑地下水位进行持续监测,通过有限差分法预测基坑地下水位,分别探讨基于2018年和2020年的近5~30年降水数据预测地下水位的可行性,分析在不同降水条件下地下水位场演化规律. 结果表明:基于2018年与2020年的近5、10、30年降水数据均可有效模拟地下水位,其中近30年降水数据为最佳降水边界条件,平均相对误差为5.73%,且有77.78%的数据平均相对误差不超过10%;主雨季期间梅雨季持续降水及台风强降水易造成地下水位预测值偏高,旱季造成地下水位预测值偏低;基坑内地下水位场在开挖后期逐步演化形成矩形分布.

关键词: 土遗址雨季降水水文地质模型地下水位    
Abstract:

Taking the Jingtoushan site, the deepest and oldest typical coastal shell mound site on the coast of China, as an example, the groundwater level of the archaeological foundation pit during excavation from June 2018 to November 2020 was continuously monitored. The groundwater level of the foundation pit was predicted by the finite difference method. The feasibility of using the precipitation data in the past 5 to 30 years of 2018 and 2020 to predict groundwater levels was explored. The evolution pattern of groundwater level fields under different precipitation conditions was analyzed. The results show that the groundwater level is effectively simulated by the precipitation data in the past 5, 10, and 30 years of 2018 and 2020. The data of the past 30 years is the best precipitation boundary condition. The average relative error of precipitation data in recent 30 years is 5.73%, with 77.78% of the precipitation data not exceeding 10%. Persistent precipitation during plum rain and heavy rainfall during typhoons in the main rainy season tend to result in a high groundwater level predictive value, while in the dry season, the groundwater level predictive value is low. The groundwater level field in the foundation pit gradually evolved into a rectangular distribution in the late excavation period.

Key words: earthen site    rainy season precipitation    hydrogeological model    groundwater level
收稿日期: 2021-04-12 出版日期: 2022-03-29
CLC:  TU 46  
基金资助: 国家自然科学基金资助项目(51779218)
作者简介: 唐晓武(1966—),男,教授,博导,从事土工合成材料、软土地基处理以及土遗址保护研究. orcid.org/0000-0002-0916-8761. E-mail: tangxiaowu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐晓武
费敏亮
俞悦
梁家馨
孙国平

引用本文:

唐晓武,费敏亮,俞悦,梁家馨,孙国平. 雨季降水对浙江井头山深埋土遗址地下水位的影响[J]. 浙江大学学报(工学版), 2022, 56(3): 598-606, 612.

Xiao-wu TANG,Min-liang FEI,Yue YU,Jia-xin LIANG,Guo-ping SUN. Influence of rainy season precipitation on groundwater level of Jingtoushan deep-buried earthen site in Zhejiang Province. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 598-606, 612.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.019        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/598

图 1  余姚2018年至2020年气象要素
图 2  井头山遗址基坑南侧壁地质剖面图
层号 土层名称 地质年代 H/m γ/(kN·m?3) c/kPa φ/(o) n/% k/(m·s?1
Ⅰ -1 杂填土 ${\rm{Q}}_{\rm{4}}^{{\rm{3ml}}}$ 1.10 18.0 10.0 8.00 0.397 8.30 × 10?3
Ⅰ -2 黏土 ${\rm{Q}}_{\rm{4}}^{{\rm{3al + l}}}$ 0.90 18.6 25.0 10.9 0.442 7.00 × 10?6
Ⅱ -1 泥炭土 ${\rm{Q}}_{\rm{4}}^{{\rm{3al + l}}}$ 0.40 12.6 4.80 3.70 0.420 1.00 × 10?5
Ⅱ -2 海相淤泥土 ${\rm{Q} }_{\rm{4} }^{ {\rm{3m} } }$ 9.40 16.3 7.30 6.20 0.460 1.50 × 10?7
黏土 ${\rm{Q}}_{\rm{3}}^{{\rm{2 - 2al + l}}}$ 2.50 19.3 28.9 16.1 0.442 6.00 × 10?6
砾砂夹粉质黏土 AnQ 2.70 20.5 12.1 23.3 0.350 1.20 × 10?5
风化凝灰岩 K 2.00 19.0 50.0 40.0 1.2 × 10?8 <1.20 × 10?9
表 1  ZK11点土层分布及土性参数
图 3  井头山遗址工地研究区开挖后期航拍(2020年10月30日)
图 4  井头山遗址基坑平面图
图 5  井头山遗址工地研究区观测井水位与日降水量
图 6  井头山遗址工地研究区基地的有限差分网格
图 7  井头山遗址工地研究区基坑的边界条件
边界条件 参数 赋值
RIV H1/m 18.5
H2/m 18.0
T1/m 0.2
W/m 8.0
K/m·s?1 1.50×10?6
DRN H3/m 19.6
T/(m2·d?1 717.12
RCH(近30 a) H4?RIV/m 0.2
H4/m 1.1
H5(2018-09)/(mm·a?1 1968.0
H5(2018-10)/(mm·a?1 984.0
H5(2018-11)/(mm·a?1 996.0
H5(2020-04)/(mm·a?1 1356.0
H5(2020-06)/(mm·a?1 2280.0
H5(2020-09)/(mm·a?1 1932.0
表 2  井头山遗址工地研究区基坑的边界条件参数
图 8  余姚近30年降水量对比
图 9  地下水位比例系数回归散点图
降水
来源
SSE REmax/% $\overline {{\rm{RE}}}$/% RB/%
近5 a 0.8267 30.58 6.70 74.07
近10 a 0.6768 23.07 5.78 75.93
近30 a 0.6043 21.20 5.73 77.78
表 3  不同降水来源拟合精度对比
图 10  井头山遗址水位场演化
图 11  井头山遗址回填后水位场
1 PAN C, CHEN K, CHEN D, et al Research progress on in-situ protection status and technology of earthen sites in moisty environment[J]. Construction and Building Materials, 2020, 253: 119219
doi: 10.1016/j.conbuildmat.2020.119219
2 EDINA S, CECILIA M C, ANDREEA B, et al Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas[J]. Environmental Pollution, 2018, 236: 734- 744
doi: 10.1016/j.envpol.2018.01.107
3 张璞, 柳荣华 SMW工法在深基坑工程中的应用[J]. 岩石力学与工程学报, 2000, 19 (Suppl.1): 1104- 1107
ZHANG Pu, LIU Rong-hua The application of SMW method in foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19 (Suppl.1): 1104- 1107
4 霍镜, 朱进, 胡正亮, 等 双轮铣深层搅拌水泥土地下连续墙(CSM工法)应用探讨[J]. 岩土工程学报, 2012, 34 (Suppl.1): 666- 670
HUO Jing, ZHU Jin, HU Zheng-liang, et al Application of deep mixing cement soil mixing wall (CSM)[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 666- 670
5 张勇, 赵云云 基坑降水引起地面沉降的实时预测[J]. 岩土力学, 2020, 29 (6): 1593- 1596
ZHANG Yong, ZHAO Yun-yun Real time prediction of land subsidence caused by foundation pit dewatering[J]. Rock and Soil Mechanics, 2020, 29 (6): 1593- 1596
6 曾超峰, 薛秀丽, 宋伟炜, 等 开挖前降水引发基坑变形机制模型试验研究[J]. 岩土力学, 2020, 41 (9): 2963- 2972
ZENG Chao-feng, XUE Xiu-li, SONG Wei-wei, et al Mechanism of foundation pit deformation caused by dewatering before soil excavation: an experimental study[J]. Rock and Soil Mechanics, 2020, 41 (9): 2963- 2972
7 郑刚, 栗晴瀚, 哈达, 等 天津市承压层应力状态及减压引发沉降规律研究[J]. 岩土力学, 2018, 39 (Suppl.2): 285- 294
ZHENG Gang, LI Qing-han, HA Da, et al Study of stress state and settlement induced by pressure relief of confined aquifers in Tianjin[J]. Rock and Soil Mechanics, 2018, 39 (Suppl.2): 285- 294
8 朱满满. 半湿润地区土质地层古墓葬防渗研究及应用[D]. 郑州: 郑州大学, 2018: 37–42.
ZHU Man-man. Study and application research on anti-seepage of ancient tombs in semi-humid soil area [D]. Zhengzhou: Zhengzhou University, 2018: 37–42.
9 POWRIE W Contributions to Géotechnique 1948 –2008: groundwater[J]. Géotechnique, 2008, 58 (5): 435- 439
10 黄应超, 徐杨青 深基坑降水与回灌过程的数值模拟分析[J]. 岩土工程学报, 2014, 36 (Suppl.2): 299- 303
HUANG Ying-chao, XU Yang-qing Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Suppl.2): 299- 303
11 W?HLING T, BURBERY L Eigenmodels to forecast groundwater levels in unconfined river-fed aquifers during flow recession[J]. Science of The Total Environment, 2020, 747: 141220
doi: 10.1016/j.scitotenv.2020.141220
12 MANSOUR M A, ALY M M A simulation-optimization approach for optimal design of dewatering systems in unconfined strata[J]. Alexandria Engineering Journal, 2020, 59: 839- 850
doi: 10.1016/j.aej.2020.02.029
13 K?HN J, KRUSE E E, SANTOS J E Hydrogeologic behavior of an alluvial aquifer, Salta Province, Argentina: simulations of hydraulic conductivity field, groundwater flow, and chloride migration[J]. Natural Resources Research, 2002, 11: 157- 166
doi: 10.1023/A:1019822820426
14 SBAI M A Unstructured gridding for MODFLOW from prior groundwater flow models: a new paradigm[J]. Groundwater, 2020, 58 (5): 685- 691
15 SAMANTA S, SHENG Z P, MUNSTER C L, et al Easonal variation of infiltration rates through pond bed in a managed aquifer recharge system in St-André, Belgium[J]. Hydrological Processes, 2020, 34 (18): 3807- 3823
doi: 10.1002/hyp.13827
16 CAI J, SU Y, SHEN H, et al Simulation of groundwater flow in fractured-karst aquifer with a coupled model in Maling Reservoir, China[J]. Applied Sciences, 2021, 11 (4): 1888
doi: 10.3390/app11041888
17 刘佑荣, 陈中行, 周丽珍 中国南方大型古遗址主要环境地质病害及其防治对策研究[J]. 岩石力学与工程学报, 2009, 28 (Suppl.2): 3795- 3800
LIU You-rong, CHEN Zhong-xing, ZHOU Li-zhen Research on prevention countermeasure and main geoenvironmental cause of large-scale ancient sites in south China[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.2): 3795- 3800
18 WAGSTAFF S, CHEETHAM J, DAVIS A, et al Hydrogeological modelling of water-level changes in an area of archaeological significance: a case study from Flag Fen, Cambridgeshire, UK[J]. Conservation and management of archaeological sites, 2016, 18 (1/3): 156- 169
19 郑洪波, 周友胜, 杨青, 等 中国东部滨海平原新石器遗址的时空分布格局——海平面变化控制下的地貌演化与人地关系[J]. 中国科学:地球科学, 2018, 48 (2): 127- 137
ZHENG Hong-bo, ZHOU You-sheng, YANG Qing, et al Spatial and temporal distribution of Neolithic sites in coastal China: sea level changes, geomorphic evolution and human adaption[J]. Science China Earth Sciences, 2018, 48 (2): 127- 137
20 GOLZIO A, BOLLATI I M, LUCIANI M, et al Weather simulation of extreme precipitation events inducing slope instability processes over mountain landscapes[J]. Applied Sciences, 2020, 10 (12): 4243
doi: 10.3390/app10124243
21 SENGANI F, MULENGA F Influence of rainfall intensity on the stability of unsaturated soil slope: case study of R523 road in Thulamela Municipality, Limpopo Province, South Africa[J]. Applied Sciences, 2020, 10 (24): 8824
doi: 10.3390/app10248824
22 江大勇, 王新平, 郝维城 浙江中全新世古气候古环境变化与河姆渡古人类[J]. 北京大学学报:自然科学版, 1999, 35 (2): 248- 253
JIANG Da-yong, WANG Xin-ping, HAO Wei-cheng Mid-Holocene paleoclimatic-paleoenvironmental changes in Zhejiang Province and Hemudu Ancients[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35 (2): 248- 253
23 黄琰, 张人禾, 龚志强, 等 中国雨季的一种客观定量划分[J]. 气象学报, 2014, 6: 1186- 1204
HUANG Yan, ZHANG Ren-he, GONG Zhi-qiang, et al An objectively quantitative division for rainy seasons in China[J]. Acta Meteorologica Sinica, 2014, 6: 1186- 1204
doi: 10.11676/qxxb2014.064
24 李明霖, 莫多闻, 孙国平, 等 浙江田螺山遗址古盐度及其环境背景同河姆渡文化演化的关系[J]. 地理学报, 2009, 64 (7): 807- 816
LI Ming-lin, MO Duo-wen, SUN Guo-ping, et al Paleosalinity in Tianluoshan site and the relation between Hemudu Culture and its environmental background[J]. Acta Geographica Sinica, 2009, 64 (7): 807- 816
doi: 10.11821/xb200907005
25 LUO Z, YONG C, FAN J, et al Precipitation recharges the shallow groundwater of check dams in the loessial hilly and gully region of China[J]. Science of The Total Environment, 2020, 742: 12
26 JAYAWARDANE V S, ANGGRAINI V, EMMANUEL E, et al Expansive and compressibility behavior of lime stabilized fiber-reinforced marine clay[J]. Journal of Materials in Civil Engineering, 2020, 32 (11): 04020328
doi: 10.1061/(ASCE)MT.1943-5533.0003430
27 杨迎晓, 龚晓南, 周春平, 等 钱塘江冲海积粉土渗透破坏试验研究[J]. 岩土力学, 2016, 37 (Suppl.2): 243- 249
YANG Ying-xiao, GONG Xiao-nan, ZHOU Chun-ping, et al Experimental study of seepage failure of Qiantang River alluvial silts[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.2): 243- 249
28 FLETCHER L, HUNGR O, EVANS S G Contrasting failure behaviour of two large landslides in clay and silt[J]. Canadian Geotechnical Journal, 2002, 39: 46- 62
doi: 10.1139/t01-079
29 张敬晓, 汪星, 汪有科, 等 黄土丘陵区林地干化土壤降雨入渗及水分迁移规律[J]. 水土保持学报, 2017, 31 (3): 231- 238
ZHANG Jing-xiao, WANG Xing, WANG You-ke, et al Regularity of rainfall infiltration and water migration in woodland drying soil in the loess hilly region[J]. Journal of Soil and Water Conservation, 2017, 31 (3): 231- 238
30 闫长斌, 姜晓迪, 杨继华, 等 利用PLSR-DNN耦合模型预测TBM净掘进速率[J]. 岩土力学, 2021, 42 (2): 519- 528
YAN Chang-bin, JIANG Xiao-di, YANG Ji-hua, et al Predicting TBM penetration rate with the coupling model of partial least squares regression and deep neural network[J]. Rock and Soil Mechanics, 2021, 42 (2): 519- 528
[1] 黄发明, 殷坤龙, 张桂荣, 唐志政, 张俊. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报(工学版), 2015, 49(6): 1193-1200.
[2] 应宏伟,章丽莎,谢康和,黄大中. 坑外地下水位波动引起的基坑水土压力响应[J]. J4, 2014, 48(3): 492-497.
[3] 许烨霜, 沈水龙, 马磊. 地下构筑物对地下水渗流的阻挡效应[J]. J4, 2010, 44(10): 1902-1906.