Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 887-895    DOI: 10.3785/j.issn.1008-973X.2021.05.009
机械工程     
超声辅助激光修复镍基高温合金V形槽
姚喆赫1,2,3(),张操棋1,2,3,宋其伟1,卢习江1,3,孔建强4,姚建华1,2,3,*()
1. 浙江工业大学 激光先进制造研究院,浙江 杭州 310023
2. 高端激光制造装备省部共建协同创新中心,浙江 杭州 310023
3. 浙江工业大学 机械工程学院,浙江 杭州 310023
4. 杭州汽轮机股份有限公司,浙江 杭州 310020
Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy
Zhe-he YAO1,2,3(),Cao-qi ZHANG1,2,3,Qi-wei SONG1,Xi-jiang LU1,3,Jian-qiang KONG4,Jian-hua YAO1,2,3,*()
1. Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China
2. Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Hangzhou 310023, China
3. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
4. Hangzhou Steam Turbine Co. Ltd, Hangzhou 310020, China
 全文: PDF(1672 KB)   HTML
摘要:

为了提高失效零件的修复质量,以V形槽为修复对象开展研究,在修复过程中引入超声振动. 耦合声场、温度场与流场建立超声辅助激光修复V形槽的非线性瞬态模型,对修复过程熔池形貌及其温度场进行数值模拟,并开展相关实验研究,分析超声对修复区组织及性能的影响机制. 数值模拟结果表明,超声振动能加速熔池流动与散热,提高熔深,细化晶粒并改善V形槽底部难熔区域的修复效果. 金相、扫描电子显微镜和电子背散射衍射分析结果表明,在超声作用下,晶粒尺寸和一次枝晶间距得到细化,Laves相更加弥散,Nb元素的富集受到抑制;常温和高温硬度在超声作用下分别提高了11.1%、10.4%. 研究表明,超声振动能有效改善镍基高温合金V形槽激光修复区的微观形貌,提高力学性能.

关键词: 超声振动V形槽析出物形貌成形形貌显微硬度    
Abstract:

The V-shaped groove was taken as the repair object, and the ultrasonic vibration was introduced in the repair process, in order to improve the repair quality of failed parts. The acoustic field, temperature field and flow field were coupled to establish a nonlinear transient model for ultrasonic assisted laser repairing of V-groove. The morphology and the temperature field of the molten pool during the repairing process were numerically studied, and the related experimental studies were carried out. The influence mechanisms of ultrasonic vibration on the microstructure and the performance of the repaired region were analyzed. Numerical simulation results showed that the ultrasonic vibration would accelerate the flow and heat dissipation of the molten pool, increase the penetration depth and refine the grains, leading to the improvement of the repair effect of the refractory region at the bottom of the V-shaped groove. Results of metallographic, scanning electron microscope and electron backscatter diffraction analysis show that the crystal grains and primary dendrite spacing were refined with the effect of ultrasonic vibration, resulting in the dispersion of the Laves phase and the suppression of the Nb element enrichment. The room-temperature hardness and the elevated-temperature hardness increased by 11.1% and 10.4%, respectively. Research shows that the ultrasonic vibration effectively improves the microscopic morphology of the laser repair zone of the nickel-based superalloy V-groove, and improves the mechanical properties.

Key words: ultrasonic vibration    V-groove    precipitate morphology    forming morphology    microhardness
收稿日期: 2020-11-03 出版日期: 2021-06-10
CLC:  TG 178  
基金资助: 国家自然科学基金资助项目(51705460);浙江省重点研发计划资助项目(2019C04004);浙江省属高校基本科研业务费专项资金资助项目(RF-B2020002)
通讯作者: 姚建华     E-mail: zhyao@zjut.edu.cn;laser@zjut.edu.cn
作者简介: 姚喆赫(1987—),男,副研究员,从事激光加工、超声/振动辅助制造研究. orcid.org/0000-0001-5252-463X.E-mail: zhyao@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姚喆赫
张操棋
宋其伟
卢习江
孔建强
姚建华

引用本文:

姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.

Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.009        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/887

图 1  超声辅助激光修复实验平台示意图
参数名称 参数
激光功率/W 500 ~ 1 000
光斑直径/mm 2.2
扫描速度/(mm?s?1 5
送粉速率/(g?min?1 10
超声振动频率/kHz 20
超声振幅/μm 20
表 1  超声辅助激光修复实验研究中的工艺参数
参数名称 参数符号 参数 文献来源
声速/(m?s?1 C 5868 [22]
密度/(kg?m?3 ρ 7993 [23]
液相线温度/K Tl 1533 [23]
导热系数/(W?m?1·K?1 $\kappa $ 29.6 [24]
固相比热容/(J?kg?1·K?1 cp 435 [24]
超声振幅/μm A 20
激光功率/W P 700
激光扫描速度/(mm?s?1 vscan 5
光斑半径/mm r 1.1
表 2  超声辅助激光修复数值模拟的参数设置
图 2  激光修复V形槽熔池形貌及其温度场数值模拟
图 3  不同条件下的激光修复V形槽熔合线对比
图 4  V形槽激光修复横截面形貌
图 5  不同激光功率下激光修复V形槽熔深比
图 6  V形槽激光修复区枝晶组织形貌
图 7  V形槽激光修复区一次枝晶宽度
图 8  V形槽激光修复过渡区横截面形貌
图 9  V形槽激光修复区析出相形貌及元素线扫描结果
图 10  V形槽激光修复区EBSD分析结果
图 11  V形槽激光修复区室温硬度
图 12  V形槽激光修复区600 ℃高温硬度
1 谢玉江, 王茂才, 王明生 高Al、Ti含量镍基高温合金激光、微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J]. 中国表面工程, 2010, 23 (5): 1- 16
XIE Yu-jiang, WANG Mao-cai, WANG Ming-sheng Recent status of surface treatment of Ni-based superalloys with high Al and Ti content by laser and electrospark fusion welding process and the way to solve welding cracking[J]. China Surface Engineering, 2010, 23 (5): 1- 16
doi: 10.3969/j.issn.1007-9289.2010.05.001
2 张杰, 王茂才, 翟玉春 先进的燃气轮机叶片粉末冶金修复技术[J]. 材料导报, 2010, 24 (5): 110- 113
ZHANG Jie, WANG Mao-cai, ZHAI Yu-chun An advanced powder metallurgy remanufactures technique for GT[J]. Materials Reports, 2010, 24 (5): 110- 113
3 姚喆赫, 姚建华, 向巧 激光再制造技术与应用发展研究[J]. 中国工程科学, 2020, 22 (3): 63- 70
YAO Zhe-he, YAO Jian-hua, XIANG Qiao Development of laser remanufacturing technology and application[J]. Strategic Study of CAE, 2020, 22 (3): 63- 70
4 NING F D, HU Y B, LIU Z C, et al. Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: a feasibility study[C]// 45th SME North American Manufacturing Research Conference. Los Angeles: NAMRC, 2017: 771-778.
5 NING F D, HU Y, LIU Z, et al Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: microstructural and mechanica characterization[J]. Journal of Manufacturing Science and Engineering: Transactions of the ASME, 2018, 140 (6): 061012
doi: 10.1115/1.4039441
6 刘奋成, 任航, 王晓光, 等 激光增材制造高Nb含量GH4169合金微观偏析行为研究[J]. 表面技术, 2019, 48 (5): 123- 131
LIU Fen-cheng, REN Hang, WANG Xiao-guang, et al Dendritic segregation of Nb modified GH4169 superalloy fabricated by laser additive manufacturing[J]. Surface Technology, 2019, 48 (5): 123- 131
7 李朝晖, 李美艳, 韩彬, 等 高压柱塞高速激光熔覆镍基合金涂层组织和耐磨性[J]. 表面技术, 2020, 49 (10): 45- 54
LI Zhao-hui, LI Mei-yan, HAN Bin, et al High-pressure plunger high-speed laser cladding nickel-based alloy coating structure and wear resistance[J]. Surface Technology, 2020, 49 (10): 45- 54
8 GORUNOV A I, NYUKHLAEV O A, GILMUTDINOV A K Investigation of microstructure and properties of low-carbon steel during ultrasonic-assisted laser welding and cladding[J]. International Journal of Advanced Manufacturing Technology, 2018, 99 (9?12): 2467- 2479
doi: 10.1007/s00170-018-2620-7
9 NING F D, HU Y B, CONG W L Microstructure and mechanical property of TiB reinforced Ti matrix composites fabricated by ultrasonic vibration-assisted laser engineered net shaping[J]. Rapid Prototyping Journal, 2019, 25 (3): 581- 591
doi: 10.1108/RPJ-05-2018-0118
10 张安峰, 付涛, 王潭, 等 超声振动对激光熔覆及固溶时效Ti6Al4V合金组织和性能的影响[J]. 中国激光, 2018, 45 (12): 85- 90
ZHANG An-feng, FU Tao, WANG Tan, et al Effect of ultrasonic vibration on microstructure and properties of laser cladded and solution-aging treated Ti6Al4V alloys[J]. Chinese Journal of Lasers, 2018, 45 (12): 85- 90
11 YAO Z H, YU X W, NIE Y, et al Effects of three-dimensional vibration on laser cladding of SS316L alloy[J]. Journal of Laser Applications, 2019, 31 (3): 032013
doi: 10.2351/1.5098127
12 TODARO C J, EASTON M A, QIU D, et al Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11 (1): 142
doi: 10.1038/s41467-019-13874-z
13 SONG J L, DENG Q L, CHEN C Y, et al Rebuilding of metal components with laser cladding forming[J]. Applied Surface Science, 2006, 252 (22): 7934- 7940
doi: 10.1016/j.apsusc.2005.10.025
14 罗登, 路媛媛, 郭溪溪, 等 单晶高温合金V槽的激光修复工艺研究[J]. 中国激光, 2016, 43 (5): 37- 43
LUO Deng, LU Yuan-yuan, GUO Xi-xi, et al Laser repairing process of V-groove in single-crystal superalloy[J]. Chinese Journal of Lasers, 2016, 43 (5): 37- 43
15 谢恩华, 李晓谦 超声波熔体处理过程中的声流现象[J]. 北京科技大学学报, 2009, 31 (11): 1425- 1429
XIE En-hua, LI Xiao-qian Acoustic streaming phenomenon during ultrasonic sonication on melt[J]. Journal of University of Science and Technology Beijing, 2009, 31 (11): 1425- 1429
doi: 10.3321/j.issn:1001-053X.2009.11.014
16 黄铭. 激光熔覆过程温度场数值模拟及其应用[D]. 广州: 华南理工大学, 2013.
HUANG Ming. Numerical simulation and application of temperature field during laser cladding[D]. Guangzhou: South China University of Technology, 2013.
17 肖冯, 米彩盈 T型角接头焊接热源模型研究[J]. 电焊机, 2010, 40 (6): 41- 45
XIAO Feng, MI Cai-ying Study on heat source model for T-joint fillet weld[J]. Electric Welding Machine, 2010, 40 (6): 41- 45
doi: 10.3969/j.issn.1001-2303.2010.06.011
18 SUN R, SHI Y J, WANG X G, et al Understanding the thermal process during laser assisted ultra-high frequency induction deposition with wire feeding[J]. International Journal of Heat and Mass Transfer, 2020, 153: 1884- 2021
19 刘珍峰. 送粉式激光熔覆温度场的三维有限元模拟[D]. 武汉: 华中科技大学, 2006.
LIU Zhen-feng. 3D FEM numerical simulation on the temperature field of laser cladding by powder injection[D]. Wuhan: Huazhong University of Science and Technology, 2016.
20 HE X, FUERSCHBACH P W, DEBROY T Heat transfer and fluid flow during laser spot welding of 304 stainless steel[J]. Journal of Physics D: Applied Physics, 2003, 36 (12): 1388- 1398
doi: 10.1088/0022-3727/36/12/306
21 车磊. 面向高温高压失效零件的增材修复工艺研究及可修复性评价[D]. 乌鲁木齐: 新疆大学, 2018.
CHE Lei. Research on the additive repair technology and reparability assessment for the failure parts under high temperature and high pressure[D]. Urumchi: Xinjiang University, 2018.
22 DE ALBUQUERQUE V H C, SILVA C C, NORMANDO P G, et al Thermal aging effects on the microstructure of Nb-bearing nickel based superalloy weld overlays using ultrasound techniques[J]. Materials and Design, 2012, 36: 337- 347
doi: 10.1016/j.matdes.2011.11.035
23 WALKER T R, BENNETT C J, LEE T L, et al A validated analytical-numerical modelling strategy to predict residual stresses in single-track laser deposited IN718[J]. International Journal of Mechanical Sciences, 2019, 151: 609- 621
doi: 10.1016/j.ijmecsci.2018.12.004
24 WANG Y C, SHI J, LIU Y Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy[J]. Journal of Crystal Growth, 2019, 521: 15- 29
doi: 10.1016/j.jcrysgro.2019.05.027
25 LABORDE J L, HITA A, CALTAGIRONE J P, et al Fluid dynamics phenomena induced by power ultrasounds[J]. Ultrasonics, 2000, 38 (1?8): 297- 300
doi: 10.1016/S0041-624X(99)00124-9
26 MADELIN G, GRUCKER D, FRANCONI J M, et al Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation[J]. Ultrasonics, 2006, 44 (3): 272- 278
doi: 10.1016/j.ultras.2006.02.006
27 聂学武, 周建忠, 徐家乐, 等 超声振幅对激光熔覆WC/IN718复合涂层组织及性能的影响[J]. 表面技术, 2020, 49 (9): 206- 214
NIE Xue-wu, ZHOU Jian-zhong, XU Jia-le, et al Effect of ultrasound amplitude on microstructure and properties of laser cladding WC/In718 composite coatings[J]. Surface Technology, 2020, 49 (9): 206- 214
28 YANG C, XU Q Y, LIU B C Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study[J]. Journal of Materials Science, 2018, 53 (13): 9755- 9770
doi: 10.1007/s10853-018-2236-1
29 CADIRLI E, KARACA I, KAYA H, et al Effect of growth rate and composition on the primary spacing, the dendrite tip radius and mushy zone depth in the directionally solidified succinonitrile-salol alloys[J]. Journal of Crystal Growth, 2003, 255 (1/2): 190- 203
30 DUPONT J N, ROBINO C V, MARDER A R, et al Solidification of Nb-bearing superalloys: part II. pseudoternary solidification surfaces[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29 (11): 2797- 2806
doi: 10.1007/s11661-998-0320-x
31 闵志先, 沈军, 熊义龙, 等 高温度梯度定向凝固镍基高温合金DZ125的组织演化[J]. 金属学报, 2011, 47 (4): 397- 402
MIN Zhi-xian, SHEN Jun, XIONG Yi-long, et al Microstructural evolution of directionally solidified Ni-based superalloy DZ125 under high temperature gradient.[J]. Acta Metallurgica Sinica, 2011, 47 (4): 397- 402
32 WANG W, LEE P D, MCLEAN M A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection[J]. Acta Materialia, 2003, 51 (10): 2971- 2987
33 XIAO W J, LI S M, WANG C S, et al Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys[J]. Materials and Design, 2019, 164
34 徐平, 江国业, 胡艳娇, 等 匙孔效应对激光熔覆层横截面几何形貌的影响研究[J]. 表面技术, 2019, 48 (10): 125- 130
XU Ping, JIANG Guo-ye, HU Yan-jiao, et al Influence of keyhole effect on the cross-section geometry of laser cladding layer[J]. Surface Technology, 2019, 48 (10): 125- 130
35 SUI S, TAN H, CHEN J, et al The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413- 427
36 缪竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学, 2011.
MIAO Zhu-jun. Study on solidification segregation and homogenization treatments of In718-type superalloys[D]. Shanghai: Shanghai Jiao Tong University, 2011.
37 CHAN K S Mechanism-based models for predicting the microstructure and stress: strain response of additively manufactured superalloy 718plus[J]. Journal of Materials Engineering and Performance, 2020, 29 (9): 2035- 2045
doi: 10.1007/s11665-020-04678-0
38 DESHPANDE A, NATH S D, ATRE S, et al Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM)[J]. Metals, 2020, 10 (5): 629
doi: 10.3390/met10050629
39 谭黎明, 张义文, 贾建, 等 镍基粉末高温合金FGH97的强化设计[J]. 材料热处理学报, 2016, 37 (4): 5- 10
TAN Li-ming, ZHANG Yi-wen, JIA Jian, et al Strengthening design of nickel based powder metallurgy superalloy FGH97[J]. Transactions of Materials and Heat Treatment, 2016, 37 (4): 5- 10
40 张佩宇, 汪诚, 谢孟芸, 等 激光冲击对K403合金激光熔覆修复微观组织和性能的影响[J]. 红外与激光工程, 2017, 46 (9): 27- 33
ZHANG Pei-yu, WANG Cheng, XIE Meng-yun, et al Effect of laser shock processing on microstructure and properties of K403 alloy repaired by laser cladding[J]. Infrared and Laser Engineering, 2017, 46 (9): 27- 33
[1] 鹿存跃,魏燕定,郭吉丰,等. 双振子自走型直线超声电机的研究[J]. J4, 2009, 43(8): 1469-1472.