Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1499-1508    DOI: 10.3785/j.issn.1008-973X.2018.08.009
机械工程     
喷水推进型水下滑翔机的水平翼参数配置及定常运动分析
傅晓云, 雷磊, 杨钢, 李宝仁
华中科技大学 机械科学与工程学院 海洋机电装备技术研究所, 湖北 武汉 430037
Wing parameter configuration and steady motion analysis of water-jet hybrid glider
FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren
Institute of Marine Mechatronics Equipment, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430037, China
 全文: PDF(1898 KB)   HTML
摘要:

以喷水推进型水下滑翔机为研究对象,对比理论计算、数值仿真和拖曳试验结果,验证数值仿真方法计算水动力的准确性.考虑水平翼对水下滑翔机滑翔效率和静稳特性的影响,通过设计正交仿真试验和利用惠克公式确定水平翼的参数配置.基于刚体六自由度动力学模型,建立喷水推进型水下滑翔机的动力学模型,对定常滑翔运动和水平面回转运动进行运动仿真.结果表明,滑翔运动时,随质心调节位移的增加,攻角减小、滑翔角和滑翔速度增大;水平面回转运动时,随舵角增大,回转半径和回转周期减小,并且航速越快,尾舵调节效果越好.研究结果对喷水推进型水下滑翔机的设计与应用具有指导意义.

Abstract:

The theoretical calculation, numerical simulation and tank towing test results were compared to verify the accuracy of the numerical simulation method for calculating hydrodynamics of water-jet hybrid glider. Considering the influence of the wing on the gliding efficiency and static stability of the water-jet hybrid glider, the wing parameter configuration was determined by designing the orthogonal simulation test and the Whicker formula. The dynamic model of a water-jet hybrid glider was established based on a rigid body six degree of freedom dynamics model, and the motion simulation was performed for the steady gliding motion and the horizontal rotary motion. The results showed that with the increase of the displacement of the centroid adjustment block during the gliding motion, the attack angle decreased, and the gliding angle and the gliding velocity increased; the rotation radius and rotation period decreased with the increase of the rudder angle during the horizontal rotary motion, and the faster the velocity was, the better the rudder adjustment effect was. The results make reference to the design and application of water-jet hybrid glider.

收稿日期: 2017-07-24 出版日期: 2018-08-23
CLC:  TP242  
基金资助:

国家重点研究发展计划资助项目(2016YFC0301204)

通讯作者: 杨钢,男,副教授.orcid.org/0000-0001-7948-7816.     E-mail: ygxing_73@hust.edu.cn
作者简介: 傅晓云(1970-),男,副教授,从事深海机电装备研究.orcid.org/0000-0003-3940-7345.E-mail:fxyhappy@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.

FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.009        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1499

[1] STOMMEL H. The Slocum mission[J]. Oceanography, 1989, 2(1):22-25.
[2] SCHOFIELD O, KOHUT J, ARAGON D, et al. Slocum gliders:robust and ready[J]. Journal of Field Robotics, 2010, 24(6):473-485.
[3] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seaglider:a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):424-436.
[4] RUDNICK D L, DAVIS R E, SHERMAN J T. Spray underwater glider operations[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(6):1113-1122.
[5] EICHHORN M, WILLIAMS C D, BACHMAYER R, et al. A mission planning system for the AUV "SLOCUM Glider" for the Newfoundland and Labrador Shelf[J]. Journal of Petrology, 2017, 27(6):1331-1364.
[6] BACHMAYER R, LEONARD N E, GRAVER J, et al. Underwater gliders:recent developments and future applications[C]//International Symposium on Underwater Technology.[S. l.]:IEEE, 2004:195-200
[7] HOBSON B W, BELLINGHAM J G, KIEFT B, et al. Tethys-class long range AUVs-extending the endurance of propeller-driven cruising AUVs from days to weeks[C]//Autonomous Underwater Vehicles.[S. l.]:IEEE, 2012:1-8
[8] WANG S X, SUN X J, WANG Y H, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1):97-112.
[9] YANG C, PENG S, FAN S. Performance and stability analysis for ZJU glider[J]. Marine Technology Society Journal, 2014, 48(3):88-103.
[10] PENG S, YANG C, FAN S, et al. Hybrid underwater glider for underwater docking:modeling and performance evaluation[J]. Marine Technology Society Journal, 2014, 48(6):112-124.
[11] FAN S S, YANG C J, PENG S L, et al. Underwater glider design based on dynamic model analysis and prototype development[J]. Journal of Zhejiang University Science C, 2013, 14(8):583-599.
[12] PENG S, YANG C, FAN S, et al. A hybrid underwater glider for underwater docking[C]//Oceans. San Diego:IEEE, 2014, 152(2): 1-7
[13] LIU F, WANG Y, NIU W, et al. Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings[C]//Oceans. San Diego:IEEE, 2014, 152(1):1-5
[14] SUN C, SONG B, WANG P, et al. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6):693-704.
[15] SUGIMOTO T. Wing design for hang-gliders having minimum induced drag[J]. Journal of Aircraft, 2015, 29(4):730-731.
[16] HESS J L. Calculation of potential flow about arbitrary three-dimensional lifting bodies[M]. Long Beach:Douglas Aircraft Company, 1969:8
[17] BETTLE M C, GERBER A G, WATT G D. Unsteady analysis of the six DOF motion of a buoyantly rising submarine[J]. Computers and Fluids, 2009, 38(9):1833-1849.
[18] JAGADEESH P, MURALI K, IDICHANDY V G. Experimental investigation of hydrodynamic force coefficients over AUV hull form[J]. Ocean Engineering, 2009, 36(1):113-118.
[19] ZHAO J, SU Y, JU L, et al. Hydrodynamic performance calculation and motion simulation of an AUV with appendages[C]//International Conference on Electronic and Mechanical Engineering and Information Technology. Harbin:IEEE, 2011:657-660
[20] YU X, SU Y. Hydrodynamic performance calculation of mini-AUV in uneven flow field[C]//IEEE International Conference on Robotics and Biomimetics. Tianjin:IEEE, 2011:868-872
[21] 姜次平, 邵世明. 船舶阻力[M]. 上海:上海交通大学出版社, 1985:35-42
[22] RAMAMURPHY A V. Wall slip in viscous fluids and influence of materials of construction[J]. Journal of Rheology, 1986, 30(2):337-357.
[23] CHONG-BEN N I, ZHU R C, MIAO G P, et al. A method for ship resistance prediction based on CFD computation[J]. Chinese Journal of Hydrodynamics, 2010, 25(5):579-586.
[24] VELDMAN A E P, VOOREN A I V D. Drag of a finite flat plate[C]//Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics. Berlin:Springer, 1975:423-430
[25] ISA K, ARSHED M R, ISHAK S. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control[J]. Ocean Engineering, 2014, 81(2):111-129.
[26] BHATTA P. Nonlinear stability and control of gliding vehicles[J]. Recent Developments in Ruminant Nutrition, 2006, 4(10):325-352.
[27] WU J, ZHANG M, SUN X. Hydrodynamic characteristics of the main parts of a hybrid-driven underwater glider PETREL[M].[S. l.]:Autonomous Underwater Vehicles, 2011
[28] 施生达. 潜艇操纵性[M]. 北京:国防工业出版社, 1999:123-129
[29] KIM S H. Comparison of sensitivity analysis methods for building energy simulations in early design phases:once-at-a-time (OAT) vs. variance-based methods[J]. KIEAE Journal, 2016, 16(2):17-22.
[30] WEBB D C, SIMONTTI P J, JONES C P. SLOCUM: an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):447-452.
[31] BRESHEARS D D, WHICKER J J, JOHANSEN M P, et al. Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems:quantifying dominance of horizontal wind-driven transport[J]. Earth Surface Processes and Landforms, 2003, 28(11):1189-1209.
[32] 朱雨时, 杨灿军, 吴世军, 等. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报:工学版, 2016, 50(9):1637-1645 ZHU Yu-shi, YANG Can-jun, WU Shi-jun, et al. Water glider steering performance in water column measurement[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(9):1637-1645
[33] GRAVER GRADY J. Underwater gliders:dynamics, control and design[J]. Journal of Fluids Engineering, 2005, 127(3):523-528.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[5] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[6] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[7] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[8] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[9] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[10] 谷雨, 李平, 韩波. 基于分层粒子滤波的地标检测与跟踪[J]. J4, 2010, 44(4): 687-691.
[11] 蒋荣欣, 张亮, 田翔, 陈耀武. 多机器人队形变换最优效率求解[J]. J4, 2010, 44(4): 722-727.
[12] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. J4, 2010, 44(3): 426-431.
[13] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[14] 奚海燕, 牟同升, 李俊凯, 等. 平板显示器彩色运动伪像的测量与评价[J]. J4, 2009, 43(6): 1158-1162.
[15] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.