Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1267-1274    DOI: 10.3785/j.issn.1008-973X.2018.07.006
机器人建模与控制     
有并联脊柱的四足机器人步态规划
李中雯, 王斌锐, 陈迪剑
中国计量大学 机电工程学院, 浙江 杭州 310018
Gait planning for quadruped robot with parallel spine
LI Zhong-wen, WANG Bin-rui, CHEN Di-jian
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(2988 KB)   HTML
摘要:

为了增加足式机器人的腿部运动范围和吸收地面冲击力,在刚性躯体四足机器人的基础上,设计3-RPS并联机构作为机器人的脊柱.建立有脊柱四足机器人的运动学模型,得到脊柱关节的周期性与质心位置的关系.在对角步态的基础上,利用脊柱偏航方向的自由度,规划了脊柱扭转对角步态.采用Hopf振荡器,建立耦合中枢模式发生器(CPG)网络输出步态曲线.通过与刚性躯干四足机器人的对比仿真和实验可知,主动脊柱的加入使机器人运行过程中的俯仰波动降低45.79%,矫正了偏航位置. 脊柱关节的周期性转动不会引起质心位置的突变.脊柱波动与肢体摆动间的协调,使得有脊柱四足机器人具有更优的运动性能.

Abstract:

A 3-RPS parallel structure was added as the spine based on the quadruped robot with rigid body in order to increase the range of motion and absorb ground impact for legged robots. The kinematics model of robot with spine was established to relate between the rotation of spine and centroid. Twisting trot gait was planned by the yaw joint of spine based on trot gait. The coupled central pattern generator (CPG)was constructed by five Hopf oscillator models in order to output gait curves of limbs and spine. Analysis of longitudinal stable operating conditions of quadruped robot using zero moment point was conducted. The simulation and experimental results show that active spine can reduce pitch fluctuation of the robot by45.79%, correct the yaw position and improve the stability and coordination during movement compared with rigid torso robot. The periodic rotation of the spine does not lead to a mutation of the centroid. Robot with active spine has a better performance for the stabilizing and motion by the coordination between rotating spine and swinging limbs.

收稿日期: 2018-01-02 出版日期: 2018-06-26
CLC:  TP242  
基金资助:

国家自然科学基金资助项目(51575503).

通讯作者: 陈迪剑,男,讲师.orcid.org/0000-0001-6595-6677.     E-mail: djchen@cjlu.edu.cn
作者简介: 李中雯(1993-),女,硕士生,从事仿生机器人的研究.orcid.org/0000-0003-1097-9489.E-mail:wendylzw@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.

LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.006        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1267

[1] KAR D C, KURIEN ISSAC K, JAYARAJAN K. Minimum energy force distribution for a walking robot[J]. Journal of Field Robotics, 2015, 18(2):47-54.
[2] 孟健,李贻斌,李彬.四足机器人对角小跑步态全方位移动控制方法及其实现[J].机器人,2015, 37(1):74-84. MENG Jian, LI Yi-bin, LI Bin. Control method and its implementation of quadruped robot in omni-directional trotting gait[J]. Robot, 2015, 37(1):74-84.
[3] WANG C, ZHANG T, WEI X. Dynamic characteristics and stability criterion of rotary galloping gait with an articulated passive spine joint[J]. Advanced Robotics, 2016, 31(4):1-16.
[4] KAWASAKI R, SATO R. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//IEEE International Conference on Robotics and Biomimetics. Bali:IEEE, 2017:71-76.
[5] MIKI K, TSUJITA K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Tivoli:IEEE, 2012:1976-1981.
[6] AOI S, KATAYAMA D, FUJIKI S. Cusp catastrophe embedded in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting[C]//IEEE International Conference on Robotics and Biomimetics. Guangzhou:IEEE, 2012:384-389.
[7] DONG J H, SANG O S, LEE J, et al. High speed trot-running:Implementation of a hierarchical controllerusing proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2015, 33(11):1417-1445.
[8] SEOK S, WANG A, MENG Y C. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(3):1-13.
[9] POUYA S, KHODABAKHSH M, SPRÖWITZ A, et al. Spinal joint compliance and actuation in a simulated bounding quadruped robot[J]. Autonomous Robots, 2017, 41(2):437-452.
[10] KUEHN D, BEINERSDORF, BERNHARD F. Active spine and feet with increased sensing capabilities for walking robots[C]//International Symposium on Artificial Intelligence. Germany:[s.n.], 2012:1204-1210.
[11] 甄伟鲲,康熙,张新生.一种新型四足变胞爬行机器人的步态规划研究[J].机械工程学报,2016,52(11):26-33. ZHEN Wei-kun, KANG Xi, ZHANG Xin-sheng. Gait planning of a novel metamorphic quadruped robot[J]. Journal of Mechanical Engineering, 2016, 52(11):26-33.
[12] HU Y, LIANG J, WANG T. Parameter synthesis of coupled nonlinear oscillators for CPG-based roboticlocomotion[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6183-6191.
[13] SPRÖWITZ A, TULEU A, VESPIGNANI M. Towards dynamic trot gait locomotion:design, control, and experiments with Cheetah-cub, a compliant quadruped robot[J]. International Journal of Robotics Research, 2013, 32(8):932-950.
[14] FUKUOKA Y, HABU Y, FUKUI T. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation[J]. Biological Cybernetics, 2013, 107(6):695-710.
[15] 王斌锐,王涛,郭振武.气动肌肉四足机器人建模与滑模控制[J].机器人,2017,39(5):620-626. WANG Bin-rui, WANG Tao, GUO Zhen-wu. Modeling and sliding mode control of quadruped robot driven by pneumatic muscles[J]. Robot, 2017, 39(5):620-626.
[16] HU Y, LIANG J, WANG T. Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6183-6191.
[17] NYAKATURA J A, FISCHER M S. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth[J]. Journal of Experimental Biology, 2010, 213(24):4278-4290.
[18] IJSPEERT A J, CABELGUEN J M. Control of aquatic and terrestrial gaits in salamander[M]. New York:Springer, 2015:1-9.
[19] SANTOS C P, ALVES N, MORENO J C. Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2016, 85(1):1-24.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[5] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[6] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[7] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[8] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[9] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[10] 谷雨, 李平, 韩波. 基于分层粒子滤波的地标检测与跟踪[J]. J4, 2010, 44(4): 687-691.
[11] 蒋荣欣, 张亮, 田翔, 陈耀武. 多机器人队形变换最优效率求解[J]. J4, 2010, 44(4): 722-727.
[12] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. J4, 2010, 44(3): 426-431.
[13] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[14] 奚海燕, 牟同升, 李俊凯, 等. 平板显示器彩色运动伪像的测量与评价[J]. J4, 2009, 43(6): 1158-1162.
[15] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.