Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2215-2222    DOI: 10.3785/j.issn.1008-973X.2019.11.020
能源工程     
基于磁悬浮结构的人体动能采集技术
费飞1(),刘申宇1,吴常铖1,杨德华1,周升丽2
1. 南京航空航天大学 自动化学院,江苏 南京 211106
2. 西北工业大学 航天学院,陕西 西安 710072
Human kinetic energy harvesting technology based on magnetic levitation structure
Fei FEI1(),Shen-yu LIU1,Chang-cheng WU1,De-hua YANG1,Sheng-li ZHOU2
1. Institute of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
 全文: PDF(1419 KB)   HTML
摘要:

设计基于磁悬浮结构的电磁能量采集装置,该装置可佩戴于使用者的腕部、肘部和脚踝处,收集人体运动过程中产生的动能. 概述现有的可用于振动能量采集的多种能量采集技术,利用惯性传感器对实验者运动时的关节加速度及角速度进行测量,对磁悬浮结构的非线性能量采集工作原理进行理论分析. 运用有限元工具对振动时结构周边的磁场分布和磁力线变化进行仿真研究,并通过振动实验平台验证装置的共振频率和电压输出范围. 当使用者佩戴该装置进行测试时,装置输出的电压及功率随运动速度的增加而增加,在8 km/h的运动条件下,腕部、肘部和踝部所能俘获的最大瞬时功率分别为0.60、0.30、0.58 mW. 实验结果表明,基于磁悬浮互斥结构的电磁能量采集装置能有效采集人体动能,并为可穿戴传感器等低功耗设备供能.

关键词: 磁悬浮人体动能能量采集有限元仿真可穿戴设备    
Abstract:

An electromagnetic energy harvesting device based on magnetic levitation structure was designed, and the harvesting device can be installed on wrist, elbow and ankle to harvest human kinetic energy generated during human motions. Several kinds of energy harvesting technologies for vibration energy were summarized. The acceleration and the angular velocity of human joints in motion were measured with inertial sensors. The work principle of nonlinear energy harvesting of magnetic levitation structure was analyzed theoretically. The distribution of magnetic field and the variation of magnetic line of force around the structure during vibration were simulated with finite element tools. The resonant frequencies and the range of output voltage were verified by vibration test platform. When the user wears the device for testing, the output voltage and the power increase with the speed of movement. At the speed of 8 km/h, the maximum instantaneous power values captured by wrist, elbow and ankle were 0.60 mW, 0.30 mW and 0.58 mW, respectively. Experimental results show that the electromagnetic energy harvesting device based on magnetic levitation structure can effectively scavenge human kinetic energy and provide electric power for low power consumption devices such as wearable sensors.

Key words: magnetic levitation    human kinetic energy    energy harvesting    finite element simulation    wearable device
收稿日期: 2018-09-08 出版日期: 2019-11-21
CLC:  TP 212  
基金资助: 国家自然科学基金资助项目(61501226);江苏省双创博士计划资助项目(1003-YQR16007);南京航空航天大学实验技术研究与开发资助项目(2016050300033264);南京航空航天大学研究生创新基地开放基金资助项目(kfjj20170314)
作者简介: 费飞(1981—),男,讲师,博士,从事环境能量采集研究. orcid.org/0000-0001-6628-0525. E-mail: fei.fei@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
费飞
刘申宇
吴常铖
杨德华
周升丽

引用本文:

费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.

Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.020        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2215

类型 优点 缺点
电磁式 无需驱动电源 磁体与线圈尺寸大
输出电流大 难以与MEMS技术集成
体积小、结构简单 输出电压低
静电式 输出电压高 需要外部电源
收集频率广 电容气隙小、实现困难
易与MEMS技术集成 低电流、高输出阻抗
压电式 机电转换效率高 高输出阻抗
输出电压高 存在非线性效应
易与MEMS技术集成 压电材料较脆、易疲劳
表 1  3种振动能收集技术的优缺点
行为 Ek/mW Ekc/mW
呼气 1.00×103 0.40×103
血压 0.93×103 0.37×103
呼吸胸腔变化 0.83×103 0.42×103
手指运动 6.9~19.0 0.76~2.10
上肢运动 60.00×103 0.33×103
表 2  人体日常活动产生及可回收能量
图 1  惯性运动传感器安装示意图
图 2  不同运动速度下人体各部位加速度和角速度
图 3  不同运动速度下的肢体摆动频率
图 4  电磁俘能装置结构图
参数 数值/mm 参数 数值/mm
l1 60.0 w1 34.0
l2 38.0 w2 21.7
l3 25.8 w3 18.0
表 3  电磁俘能装置参数
图 5  磁极互斥结构系统等效模型图
图 6  仿真模型的半剖面
图 7  6 Hz激励频率下磁感应强度/磁感线的半剖面
图 8  初始位置处的磁场分布三维图
图 9  电磁俘能装置和激振实验平台
参数 数值
线圈匝数N/匝 1 500
导线直径d/mm 0.2
Lp/m 113.1
Rc 67
磁铁型号 NdFeB-N38
固定磁铁尺寸D0×H0/mm Φ20×1
固定磁铁质量m0/g 3.99
D×H/mm Φ15×2
移动磁铁质量m/g 4.07
G/mm 4.00
装置总质量M/g 72.52
表 4  电磁俘能装置系统参数
图 10  开路电压峰峰值、激振台加速度随频率的变化曲线
图 11  输出功率随负载电阻的变化曲线
图 12  6 Hz激励频率下开路电压理论、仿真和实验结果比较
图 13  俘能装置的佩戴方式
图 14  开路电压峰峰值随运动速度的变化曲线
图 15  8 km/h运动速度下腕部、肘部、踝部产生的电压波形
1 PANTELOPOULOS A, BOURBAKIS N G A survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems Man and Cybernetics, 2009, 40 (1): 1- 12
2 VIEIRA M A M, COELHO C N, SILVA D C D, et al. Survey on wireless sensor network devices [C]// 2003 IEEE Conference on Emerging Technologies and Factory Automation. Lisbon: IEEE, 2003: 537-544.
3 COLOMER-FARRARONS J, MIRIBEL-CATALA P, SAIZ-VELA A, et al A multiharvested self-powered system in a low-voltage low-power technology[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (9): 4250- 4263
doi: 10.1109/TIE.2010.2095395
4 曹自平, 王楚, 袁明, 等 环境能量采集技术的研究现状及发展趋势[J]. 南京邮电大学学报: 自然科学版, 2016, 36 (4): 1- 10
CAO Zi-ping, WANG Chu, YUAN Ming, et al Survey on ambient energy harvesting techniques and its development tendency[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2016, 36 (4): 1- 10
5 曹文英, 谷秋瑾, 刘雨婷, 等 人体能量收集的研究现状[J]. 微纳电子技术, 2016, 53 (2): 78- 86
CAO Wen-ying, GU Qiu-jin, LIU Yu-ting, et al Research status of human energy harvesting[J]. Micronanoelectronic Technology, 2016, 53 (2): 78- 86
6 YUEN S C L, LEE J M H, LUK M H M, et al. AA size micro power conversion cell for wireless applications [C]// 2004 IEEE Conference on Intelligent Control and Automation. Hangzhou: IEEE, 2009: 5629-5634.
7 SARI I, BALKAN T, KULAH H An electromagnetic micro power generator for wideband environmental vibrations[J]. Sensors and Actuators A: Physical, 2008, 145/146: 405- 413
doi: 10.1016/j.sna.2007.11.021
8 WANG Z, HU J, HAN J, et al A novel high-performance energy harvester based on nonlinear resonance for scavenging power-frequency magnetic energy[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (8): 6556- 6564
doi: 10.1109/TIE.2017.2682040
9 TORRES E O, RINCON-MORA G A Electrostatic energy-harvesting and battery-charging CMOS system prototype[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56 (9): 1938- 1948
doi: 10.1109/TCSI.2008.2011578
10 SUZUKI Y, MIKI D, EDAMOTO M, et al A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20 (10): 104002
doi: 10.1088/0960-1317/20/10/104002
11 王二萍, 高景霞, 张金平, 等 压电俘能器研究现状及新发展[J]. 电子元件与材料, 2015, (9): 18- 24
WANG Er-ping, GAO Jing-xia, ZHANG Jin-ping, et al Current situation and new trend of piezoelectric energy harvesters[J]. Electronic Components and Materials, 2015, (9): 18- 24
12 PASQUALE G D, SOMA A. Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors [C]// 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. Barcelona: IEEE, 2013: 1-6.
13 SNEHALIKA, BHASKER M U. Piezoelectric energy harvesting from shoes of soldier [C]// 2016 IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems. Delhi: IEEE, 2016: 1-5.
14 SONG H C, KUMAR P, MAURYA D, et al Ultra-low resonant piezoelectric MEMS energy harvester with high power density[J]. Journal of Microelectromechanical Systems, 2017, 26 (6): 1226- 1234
doi: 10.1109/JMEMS.2017.2728821
15 刘成龙, 孟爱华, 陈文艺, 等 振动能量收集技术的研究现状与发展趋势[J]. 装备制造技术, 2013, (12): 43- 47
LIU Cheng-long, MENG Ai-hua, CHENG Wen-yi, et al Research and development of vibration energy harvesting technology[J]. Equipment Manufacturing Technology, 2013, (12): 43- 47
doi: 10.3969/j.issn.1672-545X.2013.12.015
16 SUE C Y, TSAI N C Human powered MEMS-based energy harvest devices[J]. Applied Energy, 2012, 93 (5): 390- 403
17 STARNER T Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35 (3/4): 618- 629
18 BERDY D F, VALENTINO D J, PEROULIS D Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester[J]. Sensors and Actuators A: Physical, 2015, 222: 262- 271
doi: 10.1016/j.sna.2014.12.006
19 WANG W, CAO J, ZHANG N, et al Magnetic-spring based energy harvesting from human motions: design, modeling and experiments[J]. Energy Conversion and Management, 2017, 132: 189- 197
doi: 10.1016/j.enconman.2016.11.026
20 MANN B P, SIMS N D Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of Sound and Vibration, 2009, 319 (1/2): 515- 530
21 PRIYA S, INMAN D J. Energy harvesting technologies [M]. New York: Springer, 2009: 3-9.
22 SHAN X B, GUAN S W, LIU Z S, et al A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University: Science A, 2013, 14 (12): 890- 897
doi: 10.1631/jzus.A1300210
23 FOISAL A R M, HOMG C, CHUNG G S Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever[J]. Sensors and Actuators A: Physical, 2012, 182 (15): 106- 113
[1] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[2] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
[3] 忽丽莎, 王素贞, 陈益强, 高晨龙, 胡春雨, 蒋鑫龙, 陈振宇, 高兴宇. 基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报(工学版), 2018, 52(9): 1717-1728.
[4] 张承谦, 赵朋, 颉俊, 夏能, 傅建中. 抗磁性高密度物质的磁悬浮密度测量方法[J]. 浙江大学学报(工学版), 2018, 52(4): 613-618.
[5] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[6] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[7] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[8] 展永政, 王光庆. 压电振动能量采集器的性能分析与功率优化[J]. 浙江大学学报(工学版), 2014, 48(7): 1248-1253.
[9] 邓见, 戴滨, 邵雪明, 郑耀. 全被动式海流能量采集系统水动力学机理[J]. J4, 2013, 47(10): 1784-1789.
[10] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.
[11] 袁平 柯映林 董辉跃. 基于次摆线轨迹的铝合金高速铣削有限元仿真[J]. J4, 2009, 43(3): 570-577.
[12] 黄明星 叶云岳 方攸同 王建乔 吴钢梁 李林. 磁悬浮试验线运行车辆的结构设计与分析[J]. J4, 2008, 42(5): 805-809.
[13] 郭亮 卢琴芬 叶云岳. 磁悬浮列车用直线电机的有限元分析和电感计算[J]. J4, 2006, 40(1): 167-170.