机械工程、电气工程 |
|
|
|
|
重载磁悬浮轴承-转子自适应控制性能 |
关旭东( ),周瑾*( ),金超武,徐园平 |
南京航空航天大学 机电学院,江苏 南京 210016 |
|
Adaptive control performance of heavy load magnetic bearing and rotor |
Xu-dong GUAN( ),Jin ZHOU*( ),Chao-wu JIN,Yuan-ping XU |
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
Xu-dong GUAN,Jin ZHOU,Chao-wu JIN,Yuan-ping XU. Adaptive control performance of heavy load magnetic bearing and rotor. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 662-670.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.004
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I4/662
|
1 |
杨彬. 卧螺过滤离心机动力特性分析与结构优化设计[D]. 镇江: 江苏科技大学, 2013. YANG Bin. Dynamic characteristics analysis and structural optimization design of horizontal worm screen centrifuge [D]. Zhenjiang: Jiangsu University of Science and Technology, 2013.
|
2 |
周瑾, 高天宇, 陈怡, 等 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报: 工学版, 2019, 53 (2): 40- 48 ZHOU Jin, GAO Tian-yu, CHEN Yi, et al Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 40- 48
|
3 |
SCHWEITZER G, MASLEN E H. Magnetic bearings: theory, design, and application to rotating machinery [M]. Berlin: Springer, 2009.
|
4 |
AESCHLIMANN B, HUBATKA M. STETTLER R. Commissioning of off-shore gas compressor with 9-axes magnetic bearing system: commissioning tools [C] // Proceedings of the ASME Turbo Expo: Turbomachinery Technical Conference and Exposition.[S. l.]: ASME, 2017.
|
5 |
马云翔, 于晓丽, 于溯源, 等 用于支撑HTR-10GT氦气轮机的磁力轴承设计研究[J]. 热能动力工程, 2011, 26 (2): 233- 237 MA Yun-xiang, YU Xiao-li, YU Su-yuan, et al Study on design of the magnetic bearings for supporting a HTR-10GT helium turbine[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (2): 233- 237
|
6 |
赵泾雄, 杨国军, 李悦, 等 HTR-10氦风机磁悬浮转子跌落在辐助轴承上的数值分析[J]. 核动力工程, 2012, 33 (3): 61- 64 ZHAO Jing-xiong, WANG Guo-jun, LI Yue, et al Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings[J]. Nuclear Power Engineering, 2012, 33 (3): 61- 64
doi: 10.3969/j.issn.0258-0926.2012.03.013
|
7 |
YANG Guo-jun, XU Yang, SHI Zhen-gang, et al Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT[J]. Nuclear Engineering and Design, 2007, 237 (12): 1363- 1371
|
8 |
NOSHADI A, SHI J, LEE W S, et al. High performance H∞ control of non-minimum phase active magnetic bearing system [C] // IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX: IEEE, 2014: 183-189.
|
9 |
PESCH A H, SMIRNOV A, PYRH?NEN O, et al Magnetic bearing spindle tool tracking through μ-synthesis robust control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20 (3): 1448- 1457
doi: 10.1109/TMECH.2014.2344592
|
10 |
JIN C, GUO K, XU Y, et al Design of magnetic bearing control system based on active disturbance rejection theory[J]. Journal of Vibration and Acoustics, 2018, 141 (1): 011009
|
11 |
NOSHADI A, SHI J, LEE W S, et al Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system[J]. Neural Computing and Applications, 2016, 27 (7): 2031- 2046
doi: 10.1007/s00521-015-1996-7
|
12 |
WU H, SHA Z An all-coefficient adaptive control method[J]. Acta Automatica Sinica, 1985, 11 (1): 12- 20
|
13 |
WU H, HU J, XIE Y Characteristic model-based all-coefficient adaptive control method and its applications[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37 (2): 213- 221
doi: 10.1109/TSMCC.2006.887004
|
14 |
ZHANG G, LIU J, WU H. Adaptive control of large flexible structures using the characteristic modeling technique [C] // Proceedings of the IMACS Multiconference on Computational Engineering in Systems Applications. Beijing: Tsinghua University Press, 2006.
|
15 |
DI L, LIN Z Control of a flexible rotor active magnetic bearing test rig: a characteristic model based all-coefficient adaptive control approach[J]. Control Theory and Technology, 2014, 12 (1): 1- 12
doi: 10.1007/s11768-014-0184-0
|
16 |
LYU X, DI L, LIN Z On robustness of an AMB suspended energy storage flywheel platform under characteristic model based all-coefficient adaptive control laws[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (1): 120- 130
doi: 10.1631/FITEE.1800606
|
17 |
陈怡. 磁悬浮轴承支承的卧螺离心机动力学分析及优化设计[D]. 南京: 南京航空航天大学, 2016: 52. CHEN Yi. Dynamics analysis and optimization design of the maglev decanter centrifuge [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 52.
|
18 |
SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control: analysis and design [M]. New York: Wiley, 2005.
|
19 |
吴宏鑫, 胡军, 解永春, 等. 基于特征模型的智能自适应控制[M]. 北京: 中国科学技术出版社, 2009.
|
20 |
崔恒斌, 周瑾, 董继勇, 等 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报: 工学版, 2018, 52 (4): 635- 640 CUI Heng-bin, ZHOU Jin, DONG Ji-yong, et al Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 635- 640
|
21 |
Mechanical vibration-vibration of rotating machinery equipped with active magnetic bearings-Part 3: evaluation of stability margin: ISO14839-3 [S]. London: British Standard Institution, 2006.
|
22 |
王正. 转动机械的转子动力学设计[M]. 北京: 清华大学出版社, 2015.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|