Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (4): 662-670    DOI: 10.3785/j.issn.1008-973X.2020.04.004
机械工程、电气工程     
重载磁悬浮轴承-转子自适应控制性能
关旭东(),周瑾*(),金超武,徐园平
南京航空航天大学 机电学院,江苏 南京 210016
Adaptive control performance of heavy load magnetic bearing and rotor
Xu-dong GUAN(),Jin ZHOU*(),Chao-wu JIN,Yuan-ping XU
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(2348 KB)   HTML
摘要:

针对磁悬浮轴承-转子大型化、重载化为控制系统设计带来的控制对象数学模型不易精确建立、控制参数较难调节等问题,以磁悬浮卧螺离心机中重载转子为研究对象,采用自适应控制方法进行控制性能研究. 设计支撑卧螺离心机的磁悬浮轴承-转子系统,转子长度约为3.4 m,质量约为1 090 kg. 通过仿真和试验验证了自适应方法可实时调节的控制性能,使得磁悬浮轴承支撑的重载转子稳定旋转至约4 740 r/min,转速较传统滚动支撑提高了50%以上,可以有效提高离心机的分离效率,通过ISO14839验证了稳定裕度及振动水平位均在B级安全以内.

关键词: 磁悬浮轴承重载转子自适应控制控制性能ISO14839    
Abstract:

The adaptive control method was adopted to analyze the control performance of the heavy load rotor in the magnetic levitation horizontal spiral centrifuge in order to deal with the problems caused by the large size and heavy load of the magnetic bearing and rotor in the control system design, such as the difficulty in accurately establishing the mathematical model of the control object and the difficulty in adjusting the control parameters. A magnetic bearing-rotor system was designed to support the horizontal spiral centrifuge with the rotor length of about 3.4 m and a mass of about 1 090 kg. The simulation analysis and experimental research were conducted by using the adaptive control method to verify the real-time adjustable control performance of the adaptive control method. The heavy load rotor supported by magnetic bearing rotated stably to about 4 740 r/min, and the rotational speed was increased by more than 50% compared with the traditional rolling support, which can effectively improve the separation efficiency of centrifuge. The stability margin and vibration level of the magnetic bearings and rotor system were proved to be within B level by ISO14839.

Key words: magnetic bearing    heavy load rotor    adaptive control    control performance    ISO14839
收稿日期: 2019-03-02 出版日期: 2020-04-05
CLC:  TH 39  
基金资助: 国家自然科学基金资助项目(51675261);江苏省重点研发计划资助项目(BE2016180);南京航空航天大学基本科研业务费专项科研资助项目(NZ2018460)
通讯作者: 周瑾     E-mail: guanxd@nuaa.edu.cn;zhj@nuaa.edu.cn
作者简介: 关旭东(1989—),男,博士生,从事磁悬浮技术研究. orcid.org/0000-0001-7453-5540. E-mail: guanxd@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
关旭东
周瑾
金超武
徐园平

引用本文:

关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.

Xu-dong GUAN,Jin ZHOU,Chao-wu JIN,Yuan-ping XU. Adaptive control performance of heavy load magnetic bearing and rotor. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 662-670.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I4/662

参数 数值
径向磁轴承定子外径/mm 410
径向磁轴承定子内径/mm 180
磁极宽度/mm 35
径向单边气隙/mm 0.5
偏置电流/A 3.5
径向线圈匝数 100
径向单边保护气隙/mm 0.25
轴向磁轴承磁极面积/m2 8.07×10?3
轴向磁轴承线圈匝数 320
轴向磁轴承单边气隙/mm 0.8
轴向磁轴承单边保护气隙/mm 0.4
表 1  AMBs的主要参数
图 1  磁悬浮卧螺离心机结构简图及现场实物图
图 2  AMBs系统闭环控制框图
图 3  ACAC原理框图
参数 数值 参数 数值
λ 0.15 λ1 0.7
kd 0.006 λ2 1.4
kin 200 ? ?
表 2  仿真分析中ACAC控制参数
图 4  特征模型参数辨识
图 5  控制量与输出位移
图 6  参数λ变化下系统的阶跃响应对比
参数 λ kd kin λ1 λ2
A端x 0.65 0.004 19 2 0.7 1.4
A端y 0.65 0.004 10 2 0.7 1.4
B端x 0.60 0.004 00 2 0.7 1.4
B端y 0.65 0.004 70 2 0.7 1.4
轴向 0.98 0.009 90 2 0.7 1.4
表 3  ACAC控制参数
图 7  闭环系统扫频试验结果
图 8  灵敏度传递函数伯德图
区域 灵敏度峰值/dB 区域 灵敏度峰值/dB
A S<9.5 C 12≤S<14
B 9.5≤S<12 D S≥14
表 4  灵敏度函数峰值区域
图 9  系统的整体稳定裕度
图 10  4 740 r/min下的转子位移图
图 11  4 740 r/min下的转子轴心轨迹图
图 12  位移信号及其频域信息
图 13  A端1个自由度位移信号瀑布图
图 14  转子振动位移轨迹
区域限制 振动位移
A Dmax<0.3Cmin
B 0.3CminDmax<0.4Cmin
C 0.4CminDmax<0.5Cmin
D Dmax≥0.5Cmin
表 5  推荐的区域限制标准
图 15  ISO14839振动位移水平评估
1 杨彬. 卧螺过滤离心机动力特性分析与结构优化设计[D]. 镇江: 江苏科技大学, 2013.
YANG Bin. Dynamic characteristics analysis and structural optimization design of horizontal worm screen centrifuge [D]. Zhenjiang: Jiangsu University of Science and Technology, 2013.
2 周瑾, 高天宇, 陈怡, 等 采用动力测试的双转子卧螺离心机模型修正[J]. 浙江大学学报: 工学版, 2019, 53 (2): 40- 48
ZHOU Jin, GAO Tian-yu, CHEN Yi, et al Model updating of dual-rotor decanter centrifuge with dynamic test[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 40- 48
3 SCHWEITZER G, MASLEN E H. Magnetic bearings: theory, design, and application to rotating machinery [M]. Berlin: Springer, 2009.
4 AESCHLIMANN B, HUBATKA M. STETTLER R. Commissioning of off-shore gas compressor with 9-axes magnetic bearing system: commissioning tools [C] // Proceedings of the ASME Turbo Expo: Turbomachinery Technical Conference and Exposition.[S. l.]: ASME, 2017.
5 马云翔, 于晓丽, 于溯源, 等 用于支撑HTR-10GT氦气轮机的磁力轴承设计研究[J]. 热能动力工程, 2011, 26 (2): 233- 237
MA Yun-xiang, YU Xiao-li, YU Su-yuan, et al Study on design of the magnetic bearings for supporting a HTR-10GT helium turbine[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (2): 233- 237
6 赵泾雄, 杨国军, 李悦, 等 HTR-10氦风机磁悬浮转子跌落在辐助轴承上的数值分析[J]. 核动力工程, 2012, 33 (3): 61- 64
ZHAO Jing-xiong, WANG Guo-jun, LI Yue, et al Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings[J]. Nuclear Power Engineering, 2012, 33 (3): 61- 64
doi: 10.3969/j.issn.0258-0926.2012.03.013
7 YANG Guo-jun, XU Yang, SHI Zhen-gang, et al Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT[J]. Nuclear Engineering and Design, 2007, 237 (12): 1363- 1371
8 NOSHADI A, SHI J, LEE W S, et al. High performance H∞ control of non-minimum phase active magnetic bearing system [C] // IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX: IEEE, 2014: 183-189.
9 PESCH A H, SMIRNOV A, PYRH?NEN O, et al Magnetic bearing spindle tool tracking through μ-synthesis robust control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20 (3): 1448- 1457
doi: 10.1109/TMECH.2014.2344592
10 JIN C, GUO K, XU Y, et al Design of magnetic bearing control system based on active disturbance rejection theory[J]. Journal of Vibration and Acoustics, 2018, 141 (1): 011009
11 NOSHADI A, SHI J, LEE W S, et al Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system[J]. Neural Computing and Applications, 2016, 27 (7): 2031- 2046
doi: 10.1007/s00521-015-1996-7
12 WU H, SHA Z An all-coefficient adaptive control method[J]. Acta Automatica Sinica, 1985, 11 (1): 12- 20
13 WU H, HU J, XIE Y Characteristic model-based all-coefficient adaptive control method and its applications[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37 (2): 213- 221
doi: 10.1109/TSMCC.2006.887004
14 ZHANG G, LIU J, WU H. Adaptive control of large flexible structures using the characteristic modeling technique [C] // Proceedings of the IMACS Multiconference on Computational Engineering in Systems Applications. Beijing: Tsinghua University Press, 2006.
15 DI L, LIN Z Control of a flexible rotor active magnetic bearing test rig: a characteristic model based all-coefficient adaptive control approach[J]. Control Theory and Technology, 2014, 12 (1): 1- 12
doi: 10.1007/s11768-014-0184-0
16 LYU X, DI L, LIN Z On robustness of an AMB suspended energy storage flywheel platform under characteristic model based all-coefficient adaptive control laws[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (1): 120- 130
doi: 10.1631/FITEE.1800606
17 陈怡. 磁悬浮轴承支承的卧螺离心机动力学分析及优化设计[D]. 南京: 南京航空航天大学, 2016: 52.
CHEN Yi. Dynamics analysis and optimization design of the maglev decanter centrifuge [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 52.
18 SKOGESTAD S, POSTLETHWAITE I. Multivariable feedback control: analysis and design [M]. New York: Wiley, 2005.
19 吴宏鑫, 胡军, 解永春, 等. 基于特征模型的智能自适应控制[M]. 北京: 中国科学技术出版社, 2009.
20 崔恒斌, 周瑾, 董继勇, 等 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报: 工学版, 2018, 52 (4): 635- 640
CUI Heng-bin, ZHOU Jin, DONG Ji-yong, et al Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 635- 640
21 Mechanical vibration-vibration of rotating machinery equipped with active magnetic bearings-Part 3: evaluation of stability margin: ISO14839-3 [S]. London: British Standard Institution, 2006.
22 王正. 转动机械的转子动力学设计[M]. 北京: 清华大学出版社, 2015.
[1] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[2] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[3] 张燕,王建宙,李威,王婕,陈玲玲,杨鹏. 基于数据驱动的膝关节外骨骼控制[J]. 浙江大学学报(工学版), 2019, 53(10): 2024-2033.
[4] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473.
[5] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[6] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[7] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[8] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(5): 1-.
[9] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[10] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[11] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[12] 钟琮玮, 项基, 韦巍, 张远辉. 基于简化非线性观测器的LuGre动态摩擦力补偿[J]. J4, 2012, 46(4): 764-769.
[13] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[14] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[15] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J]. J4, 2011, 45(3): 503-509.