Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
基于鲁棒观测器的肘关节鲁棒自适应控制
罗高生, 顾临怡, 李林
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Robust adaptive control of elbow based on robust observer
LUO Gao-sheng, GU Lin-yi, LI Lin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2470 KB)   HTML
摘要:

针对伺服阀控制的、双螺旋副传动的七功能机械手肘关节存在液压系统强非线性、易受外界环境温度和压力变化引起的参数不确定性、外界未知强干扰和仅有位置和油液压力状态反馈的控制特点,提出基于鲁棒观测器的输出反馈鲁棒自适应控制方法.该方法利用反演控制器设计方法对耦合的不确定系统参数和未知状态进行解耦,结合鲁棒观测器和鲁棒自适应控制器设计方法分别对未知状态和不确定参数进行观测和估计,使用李雅普诺夫稳定性理论保证了系统全局渐进稳定的控制性以及系统状态的有界性,解决了同时存在系统参数不确定性和部分未知状态相耦合的鲁棒控制问题.以国家高科技发展计划4 500 m深海作业系统的七功能主从液压机械手肘关节作为研究对象,使用提出的控制方法进行在未知外界干扰下的对比研究.实验结果表明,闭环系统可以很好地跟踪参考轨迹,具有较强的鲁棒性,能够获得令人满意的稳态精度和动态性能;修正后的参数自适应律能够保证在外界未知干扰下估计参数的有界性.

Abstract:

A robust output feedback adaptive control method based on robust observer was proposed based on the fact that the servo-valve controlled elbow joint of a 7-function hydraulic manipulator with double-screw-pair transmission has the control characteristics of strong nonlinearity of the hydraulic system, parametric uncertainties susceptible to temperature and pressure changes of the external environment, unknown external disturbances, and only position and pressure state feedback. The design method of the backstepping controller was utilized to decouple the uncertain system parameters and unknown states. The robust estimator and robust adaptive controller design method were combined to estimate unknown states and uncertain parameters. The globally asymptotic stability and boundedness of system states were guaranteed by using Lyapunov stability theory. Then the robust control problems of coupled uncertain system parameters and partially unknown states were successfully solved. Using the elbow joint of the 7-function master-slave hydraulic manipulator for the 4 500 meter Deep-sea Working System as the research subject, a comparative study was conducted by using the control method under unknown external disturbances. Experimental results show that the close-loop system with strong robustness can track the desired reference trajectory with satisfied dynamic performance and steady accuracy. The modified parameter adaptive laws can also guarantee the boundedness of the estimated parameters.

出版日期: 2014-10-01
:  TP 273  
基金资助:

国家“863”高技术研究发展计划资助项目(2008AA092301).

通讯作者: 顾临怡,男,教授,博导     E-mail: lygu@zju.edu.cn
作者简介: 罗高生(1975—),男,助理研究员,博士,从事深海水下七功能液压机械手、水下运载器和水下作业工具的研究. E-mail: kendysnow@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.007.

LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.10.007        http://www.zjujournals.com/eng/CN/Y2014/V48/I10/1758

[1] WHATTON J. Fluid power systems [M]. New Jersey: Prentice Hall, 1989: 48-75.
[2] MERRIT H E. Hydraulic control systems [M]. New York: Willey, 1967: 34-67.
[3] 施生达.潜艇操纵性[M].北京:国防工业出版社, 1995: 200-236.
[4] FITZSIMONS P M, PALAZZOLO J J. Part I: modeling of a one-degree-of-freedom active hydraulic mount [J].  Journal of Dynamic Systems, Measurement and Control, 1996, 118(3): 439-442.
[5] FITZSIMONS P M, PALAZZOLO J J. Part II: control[J]. Journal of Dynamic Systems, Measurements and control, 1996, 118(3): 443-448.
[6] ALLEYNE A, HEDRICK J K. Nonlinear adaptive of active suspension [J]. IEEE Transactions on Control Systems Technology, 1995,3: 94-101.
[7] SIROUSSPOUR M R, SALCUDEAN S E. Nonlinear control of hydraulic robots [J]. IEEE Transactions on Robotics and Automation, 2001, 17(2).
[8] WIT C, CANUDAS D, FIXOT N. Adaptive control of robot manipulators via velocity estimated feedback [J]. IEEE Transaction on Automation Control, 1992, 37(8): 1234-1237.
[9] WIT C, CANUDAS D, FIXOT N, et al. Trajectory tracking in robot manipulators via nonlinear estimated state feedback [J]. IEEE Transactions on Robotics and Automation, 1992, 8(1): 138-144.
[10] WIT C, CANUDAS D, SLOTINE J J E. Sliding observers for robot manipulators [J]. Automatica, 1991, 27(5): 859-864.
[11] WIT C, CANUDAS D, ASTROM K J, et al. Computed torque control via nonlinear observers [J]. International Journal of Communication Systems, 1990, 4(6): 443-452.
[12] DAVILA J, FRIDMAN L, LEVANT A. Second-order sliding-mode observer for mechanical systems [J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1785-1789.
[13] DAVILA J, FRIDMAN L. A direct algebraic approach to observer design under switching measurement equations [J]. IEEE Transactions on Automatic Control, 2004, 49(11): 2044-2049.
[14] FILIPESCU A, STANCU A, STAMATESCU G. On-line parameter estimation and adaptive gain smooth sliding observer-controller for robotic manipulator control [C]∥ IEEE International Conference on Control and Automation. Guangzhou: IEEE, 2007.
[15] ZHU K W, GU L Y. A MIMO nonlinear robust controller for work-class ROVs positioning and trajectory tracking control [C]∥IEEE Proceedings of 2011 Chinese Control and Decision. [S.l.]: IEEE, 2011: 2565-2570.
[16] YAO B, XU L. Observer-based adaptive robust control of a class of nonlinear systems with dynamic uncertainties [J]. International Journal of Robust and Nonlinear Control, 2001, 11: 335-356.
[17] FILIPPOV A F. Differential equation with discontinuous right-hand side [J]. Transactions of the American Mathematical Society, 1960, 62: 199.
[18] KRISTIC M, KANELLAKOPOULOS I, KOKOTOVIC P. Nonlinear and adaptive control design [M]. New York: Wiley, 2005: 21-55.
[19] SLOTINE J J E, LI W. Applied nonlinear control [M]. New Jersey: Prentice, 1991: 49-65.
[20] YAO B. Adaptive robust control of nonlinear systems with application to control of mechanical systems [D]. Berkeley: University of California, 1996.
[21] YAO B. Advanced motion control: from classical PID to nonlinear adaptive robust control [J]. The 11th IEEE International Workshop on Advanced Motion Control, Nagaoka: IEEE, 2010: 21-24.
[22] YAO B. Desired compensation adaptive robust control [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2009, 131: 06100017.
[1] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[4] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[5] 费少华,刘丹,乔明杰,章明,方强. 端框移动平台双驱同步控制系统设计[J]. 浙江大学学报(工学版), 2016, 50(1): 85-92.
[6] 宋志强, 周献中, 李华雄. 多地面无人平台协同尾随跟踪[J]. 浙江大学学报(工学版), 2015, 49(12): 2349-2354.
[7] 仇翔, 宋海裕, 俞立. 基于平均驻留时间方法的牛鞭效应稳定化控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1909-1915.
[8] 王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005-2012.
[9] 覃展斌, 陈飞飞, 金波, 张璐璐. 电液比例阀阀心位置控制PID自整定方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1503-1508.
[10] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[11] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[12] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[13] 罗中海, 孟祥磊, 巴晓甫, 费少华, 方强. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2): 265-274.
[14] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[15] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.