Please wait a minute...
浙江大学学报(工学版)
自动化技术、通信工程     
多地面无人平台协同尾随跟踪
宋志强1,2, 周献中1, 李华雄1
1. 南京大学 控制与系统工程系,江苏 南京 210008; 2. 苏州经贸职业技术学院 机电与信息技术学院,江苏 苏州 215009
Coordinated stalking tracking for multiple unmanned ground vehicles
SONG Zhi qiang1,2, ZHOU Xian zhong1, LI Hua xiong1
1. Department of Control and System Engineering, Nanjing University, Nanjing 210008, China; 2. Institute of Electrical and Information Technology, Suzhou Institute of Trade and Commerce, Suzhou 215009, China
 全文: PDF(753 KB)   HTML
摘要:

为使多地面无人平台(MUGVs)可在目标后方或侧面持续不间断地对跟踪目标,提出MUGVs协同尾随跟踪模式.在跟踪过程中,每个UGV与目标保持一定的距离,同时各UGV之间保持一定的相位.针对协同尾随跟踪的特点,提出基于地面无人平台运动学模型的协同跟踪算法.对协同尾随跟踪进行定义,针对地面无人平台运动学模型,重新定义目标运动模型.基于Lyapunov稳定性理论设计控制律,并证明算法的渐进稳定性.为使算法更具实用性,在算法中集成避障功能,通过模糊推理实现避障.所设计的算法能够实现多地面无人平台协同尾随跟踪目标,使得各个地面无人平台既和目标保持一定的距离,又能保持一定的相位.在有障碍物的情况下,地面无人平台可以安全避开障碍,之后继续尾随跟踪目标.仿真实验表明了算法的正确性和有效性.

Abstract:

A mode of coordinated stalking tracking of multiple unmanned ground vehicles (MUGVs) was proposed in order to make the MUGVs uninterruptedly track the target in the rear or from the side. In the process of tracking, each UGV keeps a certain distance with the target and maintains the phase between the UGVs at the same time. According to the characteristics of the coordinated stalking tracking, a coordinated tracking algorithm was proposed based on the kinematics model of the unmanned ground vehicle. Firstly, the stalking tracking was defined, and the target kinematic model was redefined based on the kinematics model of the UGV. Then, the control law was designed based on the Lyapunov stability theory. The asymptotic stability of the algorithm was proved and the obstacle avoidance function through fuzzy reasoning was integrated in order to make the algorithm more practical. The designed algorithm can achieve the coordinated stalking tracking of multiple unmanned ground vehicles for the target, keeping a certain distance and phase between the ground unmanned vehicles and the target. In the presence of obstacles, unmanned ground vehicles can avoid obstacles safely, and then continue to cooperative following target. The developed algorithm is shown to be stable and convergent through theoretical proof, and simulation results show the correctness and the effectiveness of the algorithm.

出版日期: 2015-12-31
:  TP 273  
基金资助:

装备预研基金重点资助项目(9140A06050213BQX).

通讯作者: 周献中,教授,博导. ORCID:0000 0003 4321 1441.     E-mail: zhouxz@nju.edu.cn
作者简介: 宋志强(1977—),男,副教授,从事协同跟踪研究. ORCID:0000 0002 8073 8405. E-mail:Songzq2000@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋志强, 周献中, 李华雄. 多地面无人平台协同尾随跟踪[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.015.

SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.015        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2349

[1] FREW E W. Cooperative standoff tracking of uncertain moving targets using active robot networks [C] ∥ 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 3277-3282.
[2] PEI W. LAN Y B, LUO X W, et al. Integrated Sensor System for Rice Conditions Monitoring Based UGV \[J\]. International Journal of Agricultural and Biological Engineering, 2004, 7(2): 75-81.
[3] KHALEGHI A M, XU D, WANG Z R, et al. ADDDAMS based planning and control framework for surveillance and crowd control via UAVs and UGVs \[J\]. Expert Systems with Applications, 2013, 40(18):7168-7183.
[4] KIM J H, KWON J W, SEO J. Multi UAV based stereo vision system without GPS for ground obstacle mapping to assist path planning of UGV \[J\]. Electronics Letters, 2014, 50(20): 1431-1432.
[5] LIM S, KIM Y, LEE D, et al. Standoff target tracking using a vector field for multiple unmanned aircrafts [J]. Journal of Intelligent and Robotic Systems, 2013,69(1 4): 347-360.
[6] CHEN H, CHANG K, AGATE C S. UAV path planning with tangent plus Lyapunov vector field guidance and obstacle avoidance [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 840-856.
[7] KIM S, OH H, TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 557-566.
[8] YOON S, PARK S, KIM Y. Circular motion guidance law for coordinated standoff tracking of a moving target [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2440-2462.
[9] OH H, TURCHI D, KIM S, et al. Coordinated standoff tracking using path shaping for multiple UAVs [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 348-363.
[10] OH H, KIM S, TSOURDOS A, et al. Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs [J]. Journal of Intelligent and Robotic Systems, 2014, 76(1): 169-183.
[11] OH H, KIM S, SHIN H S, et al. Rendezvous and standoff target tracking guidance using differential geometry [J]. Journal of Intelligent and Robotic Systems, 2013, 69(1 4): 389-405.
[12] SONG Z Q, LI H X, CHEN C L, et al. Coordinated standoff tracking of moving targets using differential geometry [J]. Journal of Zhejiang University SCIENCE C, 2014, 15(4): 284-292.
[13] SONG Z Q, ZHOU X Z, LI W, et al. Scheduling strategies of relay tracking for network based multiple unmanned ground vehicles [C] ∥ Control Conference (CCC), 2014 33rd Chinese. Nanjing: IEEE, 2014: 7943-7947.
[14] BURLUTSKIY N, TOUAHMI Y, LEE B H. Power efficient formation configuration for centralized leader follower AUVs control [J]. Journal of Marine Science and Technology, 2012, 17(3): 315-329.
[15] DU Z J, REN L M, WANG W D, et al. Kinematics/fuzzy logic combined controller for formation control of mobile robots [J]. Journal of Harbin Institute of Technology, 2013, 20(4): 121-128.
[16] HU J, ZHENG W X. Adaptive tracking control of leader follower systems with unknown dynamics and partial measurements [J]. Automatica, 2014, 50(5): 1416-1423.
[17] LIU B, ZHANG R, SHI C. Formation control of multiple behavior based robots [C] ∥ 2006 International Conference on Computational Intelligence and Security. Guang zhou: IEEE, 2006: 544-547.
[18] ANTONELLI G,ARRICHIELLO F,CHIAVERINI S. Experiments of formation control with multirobot systems using the null space based behavioral control [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1173-1182.
[19] REN W, BEARD R W. Formation feedback control for multiple spacecraft via virtual structures [J].Control Theory and Applications, IEE Proceedings. 2004, 151(3): 357-368.
[20] MEHRJERDI H, GHOMMAM J, SAAD M. Nonlinear coordination control for a group of mobile robots using a virtual structure [J]. Mechatronics, 2011, 21(7): 1147-1155.
[21] REZAEE H, ABDOLLAHI F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 347-354.
[22] LEE D, SANYAL A K, Butcher E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance [J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 587-600.
[23] LEE Y H, KIM S G, KUC T Y, et al. Virtual target tracking of mobile robot and its application to formation control [J]. International Journal of Control, Automation and Systems, 2014, 12(2): 390-398.
[24] 刘钦,刘峥,刘韵佛,等.多传感器优化部署下的机动目标协同跟踪算法[J].系统工程与电子技术, 2013, 35(2): 304-309.
LIU Qin, LIU Zheng, LIU Yun fo, et al. Maneuvering target collaborative tracking algorithm with multi sensor deployment optimization [J]. Systems Engineering and Electronics, 2013,35(2): 304-309.
[25] NIA D N, TANG H S, KARASFI B, et al. Virtual force field algorithm for a behaviour based autonomous robot in unknown environments [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(1): 51-62.
[26] HONG T S, NAKHAEINIA D, KARASFI B. Application of fuzzy logic in mobile robot navigation [M]. \[S.l.\]: INTECH Open Access Publisher, 2012: 21-36.

[1] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[4] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[5] 费少华,刘丹,乔明杰,章明,方强. 端框移动平台双驱同步控制系统设计[J]. 浙江大学学报(工学版), 2016, 50(1): 85-92.
[6] 仇翔, 宋海裕, 俞立. 基于平均驻留时间方法的牛鞭效应稳定化控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1909-1915.
[7] 王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005-2012.
[8] 覃展斌, 陈飞飞, 金波, 张璐璐. 电液比例阀阀心位置控制PID自整定方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1503-1508.
[9] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[10] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[11] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[12] 罗中海, 孟祥磊, 巴晓甫, 费少华, 方强. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2): 265-274.
[13] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[14] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[15] 方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 2014, 48(8): 1442-1450.