Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 963-971    DOI: 10.3785/j.issn.1008-973X.2020.05.014
机械工程     
基于单相坐标变换的磁悬浮转子不平衡补偿
吴海同1(),周瑾1,*(),纪历2
1. 南京航空航天大学 机电学院,江苏 南京 210016
2. 河海大学 能源与电气学院,江苏 南京 210098
Unbalance compensation of magnetically suspended rotor based on single phase coordinate transformation
Hai-tong WU1(),Jin ZHOU1,*(),Li JI2
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
 全文: PDF(3082 KB)   HTML
摘要:

针对磁悬浮转子系统的不平衡振动控制问题,提出基于二阶广义积分(SOGI)和同步旋转坐标系(SRF)变换的不平衡补偿算法. 利用SOGI实现单相位移误差的SRF变换,避免磁悬浮轴承两自由度位移幅值不均衡造成的干扰,对变换后的直流量进行比例积分(PI)控制,并将控制量逆SRF变换后叠加到原控制器的输出中,从而实现同频位移误差的无静差跟踪控制. 分析引入补偿算法后闭环系统的稳定性,通过调整逆SRF变换的相位补角可以保证系统的稳定. 仿真和实验表明,该算法能够在宽转速范围内有效抑制磁悬浮转子的同频振动,具有较好的收敛速度和补偿精度.

关键词: 主动磁悬浮轴承不平衡补偿同步旋转坐标系二阶广义积分比例积分(PI)控制器    
Abstract:

An unbalance compensation algorithm based on the second-order generalized integrator (SOGI) and the synchronous rotating frame (SRF) transformation was proposed, for the unbalance vibration control of magnetically suspended rotor (MSR) system. The SRF transformation of single-phase displacement error was realized by SOGI, which avoided the interference caused by the displacement amplitude difference between the two-degree-of-freedom of magnetic bearing. Proportional integral (PI) controller was performed on the converted DC quantity, and the control quantity was superimposed into the output of the original controller after inverse SRF transformation, thus, the co-frequency displacement error tracking control without static error was realized. Stability of closed-loop system after introducing the compensation algorithm was analyzed. The stability of the system can be guaranteed by adjusting the phase compensation angle of the inverse SRF transform. Simulation and experiment results show that the proposed algorithm can effectively suppress the co-frequency vibration of MSR over a wide frequency range and has good convergence speed and compensation accuracy.

Key words: active magnetic bearing    unbalance compensation    synchronous rotating frame    second-order generalized integrator    proportional integral (PI) controller
收稿日期: 2019-04-23 出版日期: 2020-05-05
CLC:  TH 133  
基金资助: 国家自然科学基金资助项目(51675261);中央高校基本科研业务费资助项目(B18020574);南京航空航天大学研究生创新基地开放基金资助项目(kfjj20180504)
通讯作者: 周瑾     E-mail: wu_haitong@163.com;zhj@nuaa.edu.cn
作者简介: 吴海同(1995—),男,硕士生,从事磁悬浮轴承振动控制研究. orcid.org/0000-0003-3346-9668. E-mail: wu_haitong@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴海同
周瑾
纪历

引用本文:

吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.

Hai-tong WU,Jin ZHOU,Li JI. Unbalance compensation of magnetically suspended rotor based on single phase coordinate transformation. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 963-971.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.014        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/963

图 1  磁悬浮轴承-转子截面示意图
图 2  磁悬浮轴承前馈补偿控制系统
图 3  SOGI-SRF补偿器结构图
图 4  二阶广义积分结构图
图 5  二阶广义积分伯德图
物理量 参数符号 数值 单位
转子质量 m 2.07 kg
电流刚度 ke 65.3 N/A
位移刚度 kd 0.317 N/μm
功放增益系数 ka 0.448 A/V
功放截止频率 fc 1 220 Hz
位移传感器增益 ks 20 000 V/m
保护轴承单边间隙 Cmin 0.125 mm
表 1  AMB-转子系统基本参数
图 6  AMB-转子实验台
图 7  转子结构简图
图 8  动态柔度的相频特性图
图 9  闭环系统主导根轨迹
图 10  不平衡补偿仿真结果
图 11  实际实验台动态柔度的相频特性图
图 12  相位补偿多项式拟合曲线
图 13  定速不平衡补偿效果
图 14  补偿前、后振动水平对比
图 15  补偿前、后振动位移三维频谱瀑布图
1 HERZOG R, BUHLER P, GAHLER C, et al Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4 (5): 580- 586
doi: 10.1109/87.531924
2 高辉. 主动磁悬浮轴承系统不平衡振动补偿研究[D]. 南京: 南京航空航天大学, 2011.
GAO Hui. Research on unbalanced vibration compensation of active magnetic bearing system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
3 PENG C, SUN J J, SONG X D, et al Frequency varying current harmonics elimination for active magnetic bearing system via multiple resonant controllers[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (1): 517- 526
doi: 10.1109/TIE.2016.2598723
4 CUI P L, HAN D, ZHANG G X, et al Robust odd repetitive controller for magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (3): 2025- 2033
doi: 10.1109/TIE.2018.2840495
5 王忠博, 毛川, 祝长生 电磁轴承高速电机转子多频振动的电流补偿控制[J]. 中国电机工程学报, 2018, 38 (1): 275- 284
WANG Zhong-bo, MAO Chuan, ZHU Chang-sheng Current compensation control of multiple frequency vibrations of the rotor in active magnetic bearing high speed motors[J]. Proceedings of the CSEE, 2018, 38 (1): 275- 284
6 LIU C, LIU G Autobalancing control for MSCMG based on sliding-mode observer and adaptive compensation[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4346- 4356
doi: 10.1109/TIE.2016.2551681
7 NONAMI K, FAN Q F, UEYAMA H Unbalance vibration control of magnetic bearing systems using adaptive algorithm with disturbance frequency estimation[J]. JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing, 1998, 41 (2): 220- 226
8 JIANG K J, ZHU C S, CHEN L L Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor Ssystem[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (9): 5655- 5664
doi: 10.1109/TIE.2015.2405893
9 MAO C, ZHU C Z Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (5): 4177- 4186
doi: 10.1109/TIE.2017.2772144
10 王忠博, 祝长生, 陈亮亮 基于不平衡系数辨识的电磁轴承-刚性飞轮转子系统不平衡补偿控制[J]. 中国电机工程学报, 2018, 38 (12): 3699- 3708
WANG Zhong-bo, ZHU Chang-sheng, CHEN Laing-liang Unbalance compensation control of active magnetic bearing-rigid flywheel rotor systembased on unbalance coefficients identification[J]. Proceedings of the CSEE, 2018, 38 (12): 3699- 3708
11 SHI J, ZMOOD R, QIN L Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals[J]. Control Engineering Practice, 2004, 12 (3): 283- 290
doi: 10.1016/S0967-0661(03)00095-9
12 宋腾, 韩邦成, 郑世强, 等 基于最小位移的磁悬浮转子变极性LMS反馈不平衡补偿[J]. 振动与冲击, 2015, 34 (7): 24- 32
SONG Teng, HAN Bang-cheng, ZHENG Shi-qiang, et al Variable polarity LMS feedback based on displacement nulling to compensate unbalance of magnetic bearing[J]. Journal of Vibration and Shock, 2015, 34 (7): 24- 32
13 SCHUHMANN T, HOFMANN W, WERNER R Improving operational performance of active magnetic bearings using kalman filter and state feedback control[J]. IEEE Transactions on Industrial Electronics, 2011, 59 (2): 821- 829
14 韩邦成, 刘洋, 郑世强 重复控制在磁悬浮高速转子振动抑制中的应用[J]. 振动、测试与诊断, 2015, 35 (3): 486- 492
HAN Bang-cheng, LIU Yang, ZHENG Shi-qiang Research on vibration suppression for magnetic suspension motor based on repetitive control method[J]. Journal of Vibration Measurement and Diagnosis, 2015, 35 (3): 486- 492
15 刘刚, 孙庆文, 肖烨然 永磁同步电机用坐标变换的电流谐波抑制方法[J]. 电机与控制学报, 2015, 19 (5): 30- 36
LIU Gang, SUN Qing-wen, XIAO Ye-ran Permanent magnet synchronous motor current harmonics suppression based on coordinate transformation[J]. Electric Machines and Control, 2015, 19 (5): 30- 36
16 GHARTEMANIM K A unifying approach to single-phase synchronous reference frame PLLs[J]. IEEE Transactions on Power Electronics, 2013, 28 (10): 4550- 4556
doi: 10.1109/TPEL.2012.2235185
17 张树全, 戴珂, 谢斌, 等 多同步旋转坐标系下指定次谐波电流控制[J]. 中国电机工程学报, 2010, 30 (3): 55- 62
ZHANG Shu-quan, DAI Ke, XIE Bing, et al Selective harmonic current control based on multiple synchronous rotating coordinates[J]. Proceedings of the CSEE, 2010, 30 (3): 55- 62
18 ZHENG S Q, HAN B C, FENG R, et al Vibration suppression control for AMB supported motor driveline system using synchronous rotating frame transformation[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (9): 5700- 5708
19 NAKAMURA T, WAKUI S, NAKAMURA Y. A phase stabilization method for unbalance vibration control of five-axes active magnetic bearing systems [C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Besacon: IEEE, 2014.
20 NAKAMURA T, WAKUI S, NAKAMURA Y. An interpretation of unbalance vibration compensator for five-axes active magnetic bearing systems based on internal model principle [C]// International Conference on Advanced Mechatronic Systems. Beijing: IEEE, 2015.
21 张纯江, 赵晓君, 郭忠南, 等 二阶广义积分器的三种改进结构及其锁相环应用对比分析[J]. 电工技术学报, 2017, (22): 48- 55
ZHANG Chun-jiang, ZHAO Xiao-jun, GUO Zhong-nan, et al Three improved second order generalized integrators and the comparative analysis in phase locked loop application[J]. Transactions of China Electrotechnical Society, 2017, (22): 48- 55
22 MASLEN E H, SCHWEITZER G, BLEULER H, et al. Magnetic bearings-theory, design and application to rotating machinery [M]. Dordrecht, New York: Springer, 2009.
23 崔恒斌, 周瑾, 董继勇, 等 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报: 工学版, 2018, 52 (4): 635- 640
CUI Heng-bin, ZHOU Jin, DONG Ji-yong, et al Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 635- 640
[1] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J]. J4, 2011, 45(3): 503-509.