Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1666-1675    DOI: 10.3785/j.issn.1008-973X.2022.08.021
电子与通信工程     
基于射频能量采集的电子标签设计方法
刘高平1(),宋执环2
1. 浙江万里学院 信息与智能工程学院,浙江 宁波 315100
2. 浙江大学 控制科学与工程学院,浙江 杭州 310027
Design method of electronic tag based on radio frequency energy acquisition
Gao-ping LIU1(),Zhi-huan SONG2
1. School of Information and Intelligent Engineering, Zhejiang Wanli University, Ningbo 315100, China
2. School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1656 KB)   HTML
摘要:

根据能量采集应用于标签的特点,在能量采集模块与标签模块之间添加监测电路,并在高低2个阈值设置的基础上,提出能量采集与标签协同工作策略,低阈值选取原则是保证储能模块的储能能够保证标签一次广播,最大限度地防止标签进入掉电状态. 从标签设计目标要求的广播间隔与功率出发,根据环境中能够采集到的能量大小与标签不同状态下所需能耗的变化,推导出储能电容最优值、环境中应具备的射频(RF)输入功率最小值与最优值. 利用P2110B与CC2640R2F芯片设计了一个基于射频采集的标签进行验证,测试结果表明:采取该方法设计的能量采集标签可以实现能量采集模块和标签模块协同工作,当射频输入功率大于最优值时,标签能够进行持续的“休眠 ? 广播”循环工作,有效地防止标签陷入“能量死锁”,并可自适应地在不同工作状态下转换.

关键词: 标签射频能量采集能量死锁协同    
Abstract:

According to the characteristics of energy acquisition applied to tags, a monitoring circuit was added between the energy acquisition module and the tag module, and the cooperative working strategy of energy acquisition and tags was put forward based on the setting of high and low thresholds. The low threshold selection principle is to ensure that the energy storage of the energy storage module can ensure the one-time broadcasting of the tag and prevent the tag from entering the power down state to the maximum extent. The optimal value of energy storage capacitance, minimum and optimal radio frequency (RF) input power in the environment were deduced by starting from the broadcast interval and power required in the tag design goal according to the amount of energy that can be collected in the environment and the change of energy consumption required by the tag in different states. A tag based on RF acquisition was designed by using P2110B and CC2640R2F chip for verification. Test results show that the energy acquisition tag designed by this method can realize the cooperative work of energy acquisition module and tag module. The tag can carry out continuous “sleep and broadcast” cycle when the RF input power is greater than the optimal value. It can effectively prevent the label from falling into “energy deadlock”, and can adaptively switch in different working states.

Key words: tag    radio frequency    energy acquisition    energy deadlock    cooperative work
收稿日期: 2022-03-15 出版日期: 2022-08-30
CLC:  TP 23  
基金资助: 工业控制技术国家重点实验室(浙江大学)开放课题资助项目(ICT2021B29); 浙江省公益技术研究计划资助项目(LGF19F010002); 宁波市公益类科技计划资助项目(202002N3136)
作者简介: 刘高平(1964—),男,教授,从事物联网技术研究. orcid.org/0000-0001-8700-0406. E-mail: 0574119@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘高平
宋执环

引用本文:

刘高平,宋执环. 基于射频能量采集的电子标签设计方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1666-1675.

Gao-ping LIU,Zhi-huan SONG. Design method of electronic tag based on radio frequency energy acquisition. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1666-1675.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1666

图 1  带有能量采集与储能模块的标签方案图
图 2  “能量死锁”情况下储能变化示意图
图 3  具有能量采集监测电路的标签结构框图
图 4  添加监测电路后储能变化示意图
图 5  标签工作状态转换示意图
图 6  射频能量采集电路原理图
元件 参数 含义 数值
CC2640R2F ${U_0}$/V 工作电压 3.3
${I_{{\text{tleak2}}}}$/μA IO驱动电流 20.0
${I_{{\text{tr}}}}$/mA 广播电流 5.8
${I_{{\text{slp}}}}$/μA 休眠电流 3.0
${I_{{\text{cmp}}}}$/μA COMPB工作电流 0.4
${I_{{\text{init}}}}$/mA 启动电流 2.194
${t_{\text{s}}}$/ms 完成初始化时间 25.0
${t_{{\text{tr}}}}$/ms 广播一帧时间 3.5
P2110B $\eta $/% 能量转换效率 42
$\gamma $/% 电压转换效率 85
477钽电容 ${I_{{\text{cleak1}}}}$/μA 漏电流 28.2
227钽电容 ${I_{{\text{cleak2}}}}$/μA 漏电流 13.9
106钽电容 ${I_{{\text{tleak1}}}}$/μA 漏电流 1.0
其他 ${U_{\text{H}}}$/V 高阈值 1.65
${U_{\text{L}}}$/V 低阈值 1.27
$\alpha $ ${U_{\text{C}}}/{U_0}$ 0.427
表 1  测试方案中器件参数表
图 7  主程序回调函数中的线程流程图
图 8  能量采集与标签模块实物照片图
图 9  标签上电启动时的电压测试情况图
图 10  多种输入功率情况下电压情况测试图
图 11  570 uF情况下标签启动过程时电压测试图
1 GOMEZ C, OLLER J, PARADELLS J Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology[J]. Sensors, 2012, 12 (9): 11734- 11753
doi: 10.3390/s120911734
2 陈锐志, 陈亮 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46 (10): 1316- 1326
CHEN Rui-zhi, CHEN Liang Indoor positioning with smartphones: the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46 (10): 1316- 1326
doi: 10.11947/j.AGCS.2017.20170383
3 Texas Instruments. Blutooth® low energy Beacons[EB/OL]. [2020-10-12]. http://www.ti.com/lit/an/swra475a/swra475a.pdf.
4 钟志豪. 基于能量收集和BLE的低功耗有源标签设计[D]. 成都: 电子科技大学, 2016.
ZHONG Zhi-hao. Design of low power active tag based on energy collection and BLE[D]. Chengdu: University of Electronic Science and technology, 2016.
5 AHMED A E, ABDULLAH K, HABAEBI M H, et al RF energy harvesting wireless networks: challenges and opportunities[J]. Indonesian Journal of Electrical Engineering and Informatics, 2021, 9 (1): 101- 113
6 BAI Y, JANTUNEN H, JUUTI J Energy harvesting research: the road from single source to multisource[J]. Advanced Materials, 2018, 30 (34): 1707271
doi: 10.1002/adma.201707271
7 LIU Q, IJNTEMA W, DRIF A, et al. BEH: indoor batteryless BLE Beacons using RF energy harvesting for internet of things [EB/OL]. [2022-03-01]. https://arxiv.org/abs/1911.03381.
8 MOHAMAD T, Mohamad T, SAMPE J, et al Architecture of micro energy harvesting using hybrid input of RF, thermal and vibration for semi-active RFID tag[J]. Engineering Journal, 2017, 21 (2): 183- 197
doi: 10.4186/ej.2017.21.2.183
9 齐丽晶, 胥佳颖 超级电容的发展与应用[J]. 大学物理实验, 2019, 32 (5): 36- 40
JI Li-jing, XU Jia-ying Development and application of super capacitor[J]. Physical Experiment of College, 2019, 32 (5): 36- 40
doi: 10.14139/j.cnki.cn22-1228.2019.05.010
10 Texas Instruments. CC2640R2F Datasheet[EB/OL]. [2022-03-01]. https://www.ti.c-om/cn/lit/ds/symlink/cc2640r2f.pdf.
11 Powercast. P2110B datasheet[EB/OL]. [2022- 03-01]. http://www.powercastco.com/documentation/p2110b-module-datasheet.
12 Texas Instruments. CC13x0, CC26x0 SimpleLink™ wireless MCU technical reference manual [EB/OL]. [2022-03-01]. https://www.ti.com.cn/cn/lit/ug/swcu117i/ swcu117i.pdf.
13 AVX. Standard and low profile Tantalum capacitors [EB/OL]. [2022-03-01]. https://www.kyocera-avx.com/products/niobium/smd-nbo-oxicap/oxicap-nos-series.
14 刘政雳, 戴玲, 刘高平 基于NoRTOS框架的蓝牙信标设计与开发[J]. 浙江万里学院学报, 2021, 34 (3): 88- 94
LIU Zheng-li, DAI Ling, LIU Gao-ping Design and development of bluetooth beacon based on NoRTOS framework[J]. Journal of Zhejiang Wanli University, 2021, 34 (3): 88- 94
doi: 10.13777/j.cnki.issn1671-2250.2021.03.015
15 Texas Instruments. Code Composer Studio™ integrated development environment[EB/OL]. [2022-03-01]. https://www.ti.com/tool/ccstudio.
[1] 陈小波,陈玲,梁书荣,胡煜. 重尾非高斯定位噪声下鲁棒协同目标跟踪[J]. 浙江大学学报(工学版), 2022, 56(5): 967-976.
[2] 柳长源,何先平,毕晓君. 融合注意力机制的高效率网络车型识别[J]. 浙江大学学报(工学版), 2022, 56(4): 775-782.
[3] 郑黄河,黄志球,李伟湋,喻垚慎,王永超. 基于自然近邻与协同过滤的API推荐方法[J]. 浙江大学学报(工学版), 2022, 56(3): 494-502.
[4] 董红召,方浩杰,张楠. 旋转框定位的多尺度再生物品目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(1): 16-25.
[5] 徐砚天,黄晓敏,李浩明,王志宇,郁发新. 多芯片小数分频锁相环输出信号相位同步设计[J]. 浙江大学学报(工学版), 2021, 55(9): 1788-1794.
[6] 李炜,张建军. 攻击与故障共存的ICPS综合安全控制方法[J]. 浙江大学学报(工学版), 2021, 55(6): 1185-1198.
[7] 蔡帮煌,宋慧敏,郭善广,张海灯,盛佳明. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848.
[8] 黄文锦,黄妙华. 激光雷达与路侧摄像头的双层融合协同定位[J]. 浙江大学学报(工学版), 2020, 54(7): 1369-1379.
[9] 王跃,周振邦,彭赟. 三电平双模块并联协同特定谐波消除脉宽调制[J]. 浙江大学学报(工学版), 2020, 54(7): 1425-1432.
[10] 孔庆盼,纪献兵,周儒鸿,尤天伢,徐进良. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028.
[11] 王雯涛,李佳田,吴华静,高鹏,阿晓荟,朱志浩. 摄像机主动位姿协同的人脸正视图像获取方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1936-1944.
[12] 李诺,郭斌,刘琰,景瑶,於志文. 神经协同过滤智能商业选址方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1788-1794.
[13] 董立岩,金佳欢,方塬程,王越群,李永丽,孙铭会. 基于非负矩阵分解的Slope One算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1349-1353.
[14] 王红霞,陈健,程艳芬. 采用评论挖掘修正用户评分的改进协同过滤算法[J]. 浙江大学学报(工学版), 2019, 53(3): 522-532.
[15] 胡善文,胡云清,郑海宇,朱伟光,高懿婷. 采用复合左右手结构的微型基片集成波导滤波器设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2431-2436.