Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1839-1848    DOI: 10.3785/j.issn.1008-973X.2020.09.021
航空航天技术     
射频放电等离子体激励对激波/边界层干扰的控制效果
蔡帮煌(),宋慧敏*(),郭善广,张海灯,盛佳明
空军工程大学 等离子体动力学重点实验室,陕西 西安 710038
Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference
Bang-huang CAI(),Hui-min SONG*(),Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China
 全文: PDF(3425 KB)   HTML
摘要:

在空气静止、气压为12 kPa(对应超声速风洞试验段的气压)条件下,研究射频放电等离子体的光谱特性;在马赫数为2的超声速来流中,研究射频放电等离子体激励对激波/边界层干扰非定常性的控制效果. 实验结果表明:在相同的激励频率下,随着加载功率的增大,表征电子温度的相对光谱强度增大,而表征振动温度和电子密度的相对光谱强度基本保持不变;保持加载功率不变,随着激励频率的增大,表征电子温度的相对光谱强度先增大后减小,而表征振动温度和电子密度的相对光谱强度没有明显变化. 在未施加激励时,激波振荡的主导频率为低频;在施加射频放电等离子体激励后,激波低频振荡减弱,高频振荡增强,激波特征频率从低频转向高频,再附边界层出现高能量漩涡结构.

关键词: 射频表面放电等离子体激励发射光谱激波/边界层干扰特征频率    
Abstract:

The spectral characteristics of radio frequency (RF) discharge plasma were studied at a static air pressure of 12 kPa (pressure corresponding to supersonic wind tunnel section). The effect of RF discharge plasma actuation on unsteadiness of shock wave/boundary layer interaction was studied in supersonic air flow with Ma of 2. The experimental results show that, the relative spectral intensity representing electron temperature rises with the increase of loading power at the same actuation frequency, while the relative spectral intensity representing vibration temperature and electron density hardly changes. When the loading power remains unchanged, as the actuation frequency increases, the relative spectral intensity representing electron temperature increases first and then decreases, however, the relative spectral intensity representing vibration temperature and electron density doesn’t change significantly. The dominant frequency of shock wave oscillation is low frequency without plasma actuation. After applying radio frequency discharge plasma actuation, the low-frequency oscillation of shock wave is weakened and the high-frequency oscillation is strengthened; the characteristic frequency of shock wave changes from low frequency to high frequency; high-energy vortex appears in the boundary layer.

Key words: radio frequency surface discharge    plasma actuation    emission spectrum    shock/boundary layer interference    characteristic frequency
收稿日期: 2020-01-28 出版日期: 2020-09-22
CLC:  O 534  
基金资助: 国家“973”重点基础研发规划资助项目(2006CB200303);国家自然科学基金资助项目(11472306);陕西省自然科学基础研究计划资助项目(2018JQ1011)
通讯作者: 宋慧敏     E-mail: 1015938937@qq.com;min_cargi@sina.com
作者简介: 蔡帮煌(1996—),男,硕士生,从事等离子体流动控制研究. orcid.org/0000-0001-9165-201X. E-mail: 1015938937@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
蔡帮煌
宋慧敏
郭善广
张海灯
盛佳明

引用本文:

蔡帮煌,宋慧敏,郭善广,张海灯,盛佳明. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848.

Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1839

图 1  射频放电发射光谱诊断系统
图 2  激波/边界层干扰(SWBLI)非定常性控制实验系统
图 3  压缩拐角实验件
图 4  12 kPa气压条件下的射频表面放电图像及其发射光谱
图 5  不同负载功率下的发射光谱和相对光谱强度变化图
图 6  不同频率下的发射光谱和光谱相对强度变化图
图 7  基准流场纹影图
图 8  监测点Q1~Q4处灰度时间序列的功率谱密度
图 9  K1~K6监测点与流场其他位置的相关性
图 10  基准流场下指定频率的空间频谱分布
图 11  激励频率为0.7 MHz时的纹影图及不同指定频率的功率谱空间分布
图 12  激励频率为1.0 MHz时的纹影图及不同指定频率的功率谱空间分布
图 13  不同时刻的射频放电纹影图
图 14  激波位置提取示意图
图 15  激波位置时间序列频谱图
1 CLEMENS N T, NARAYANASWAMY V Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469- 492
doi: 10.1146/annurev-fluid-010313-141346
2 李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C] // 中国航空学会第六届动力年会论文集. 北京: 中国航空学会动力专业分会, 2006: 790-799.
LI Ying-hong, WU Yun, SONG Hui-min, et al. Research progress and mechanism of plasma flow control [C] // Symposium of the 6th CSAA’s Annual Meeting. Beijing: Power Specialty Chapter of CSAA, 2006: 790-799.
3 DOERFFER P, TELEGA J Flow control effect on unsteadiness of shock wave induced separation[J]. Journal of Thermal Science, 2013, 22 (6): 511- 516
doi: 10.1007/s11630-013-0656-4
4 BENARD N, MOREAU E Role of the electric waveform supplying a dielectric barrier discharge plasma actuator[J]. Applied Physics Letters, 2012, 100 (19): 193503
doi: 10.1063/1.4712125
5 ZHAO Z J, LI J M, ZHENG J G, et al Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2014, 53 (5): 1336- 1348
6 王健, 李应红, 程邦勤, 等 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30 (8): 1374- 1379
WANG Jian, LI Ying-hong, CHENG Bang-qin, et al Experimental study on shock wave control by plasma aerodynamic excitation[J]. Journal of Aviation, 2009, 30 (8): 1374- 1379
doi: 10.3321/j.issn:1000-6893.2009.08.003
7 SUN Q, LI Y H, CHENG B Q, et al The characteristics of surface arc plasma and its control effect onsupersonic flow[J]. Physics Letters A, 2014, 378 (36): 2672- 2682
doi: 10.1016/j.physleta.2014.07.016
8 SERGEY B LEONOV, IGOR V A, VICTOR R S Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25 (6): 063001
doi: 10.1088/0963-0252/25/6/063001
9 MOREAU E Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40 (3): 605- 636
doi: 10.1088/0022-3727/40/3/S01
10 WANG H Y, LI J, JIN D, et al Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133- 137
doi: 10.1016/j.ijheatfluidflow.2017.08.004
11 KHORONZHUK R S, KARPENKO A G, VLASHKOV V, et al Microwave discharge initiated by double laser spark in a supersonic airflow[J]. Journal of Plasma Physics, 2015, 81 (3): 1- 12
12 THOMAS F O, CORKE T C, IQBAL M, et al Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47 (9): 2169- 2178
doi: 10.2514/1.41588
13 THOMAS F O, PUTNAM C M, CHU H C On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions[J]. Experiments in Fluids, 1994, 18 (1): 69- 81
14 SHINDE V J, GAITONDE D V, MCNAMARA J J. Control of shock wave turbulent boundary layer interaction using structurally constrained active surface morphing [C] // Science Technology 2020 Forum. Orlando: AIAA, 2020-0038.
15 PIPONNIAU S, DUSSAUGE J P, DEBIèVE J F, et al A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87- 108
doi: 10.1017/S0022112009006417
16 KLIMOV A, BITYURIN V and SEROV Y. Non-thermal approach in plasma aerodynamics [C] // 39th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2001-0348.
17 KLIMOV A, GRIGORENKO A, EFIMOV A, et al. Vortex control by non-equilibrium plasma [C] // 52nd Aerospace Sciences Meeting. Maryland: AIAA, 2014-0960.
18 ZUO F Y, MEMMOLO A, HUANGG P, et al Direct numerical simulation of conical shock wave–turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877: 167- 195
doi: 10.1017/jfm.2019.558
19 WANG J, LI Y H, CHENG B Q, et al Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow[J]. Journal of Physics D: Applied Physics, 2009, 42 (16): 165503
doi: 10.1088/0022-3727/42/16/165503
20 YAN H, LIU F, XU J. Oblique shock control by surface arc discharge plasma [C] // 8th AIAA Flow Control Conference. Washington: AIAA, 2016-3776.
21 王宏宇, 李军, 金迪等 激波/边界层干扰对等离子体合成射流的响应特性[J]. 物理学报, 2017, 66 (8): 084705
WANG Hong-yu, LI Jun, JIN Di, et al WU Yun. Response characteristics of shock wave/boundary layer interference to plasma synthetic jet[J]. Journal of physics, 2017, 66 (8): 084705
doi: 10.7498/aps.66.084705
22 杨臻. 射频放电等离子体激励特性及其控制激波的研究 [D]. 西安: 空军工程大学, 2018.
YANG Zhen. Study on excitation characteristics and shock wave control of radio frequency discharge plasma [D]. Xi'an: Air Force Engineering University, 2018.
No related articles found!