航空航天技术 |
|
|
|
|
射频放电等离子体激励对激波/边界层干扰的控制效果 |
蔡帮煌( ),宋慧敏*( ),郭善广,张海灯,盛佳明 |
空军工程大学 等离子体动力学重点实验室,陕西 西安 710038 |
|
Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference |
Bang-huang CAI( ),Hui-min SONG*( ),Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG |
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an 710038, China |
引用本文:
蔡帮煌,宋慧敏,郭善广,张海灯,盛佳明. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848.
Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.021
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1839
|
1 |
CLEMENS N T, NARAYANASWAMY V Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469- 492
doi: 10.1146/annurev-fluid-010313-141346
|
2 |
李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C] // 中国航空学会第六届动力年会论文集. 北京: 中国航空学会动力专业分会, 2006: 790-799. LI Ying-hong, WU Yun, SONG Hui-min, et al. Research progress and mechanism of plasma flow control [C] // Symposium of the 6th CSAA’s Annual Meeting. Beijing: Power Specialty Chapter of CSAA, 2006: 790-799.
|
3 |
DOERFFER P, TELEGA J Flow control effect on unsteadiness of shock wave induced separation[J]. Journal of Thermal Science, 2013, 22 (6): 511- 516
doi: 10.1007/s11630-013-0656-4
|
4 |
BENARD N, MOREAU E Role of the electric waveform supplying a dielectric barrier discharge plasma actuator[J]. Applied Physics Letters, 2012, 100 (19): 193503
doi: 10.1063/1.4712125
|
5 |
ZHAO Z J, LI J M, ZHENG J G, et al Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2014, 53 (5): 1336- 1348
|
6 |
王健, 李应红, 程邦勤, 等 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30 (8): 1374- 1379 WANG Jian, LI Ying-hong, CHENG Bang-qin, et al Experimental study on shock wave control by plasma aerodynamic excitation[J]. Journal of Aviation, 2009, 30 (8): 1374- 1379
doi: 10.3321/j.issn:1000-6893.2009.08.003
|
7 |
SUN Q, LI Y H, CHENG B Q, et al The characteristics of surface arc plasma and its control effect onsupersonic flow[J]. Physics Letters A, 2014, 378 (36): 2672- 2682
doi: 10.1016/j.physleta.2014.07.016
|
8 |
SERGEY B LEONOV, IGOR V A, VICTOR R S Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25 (6): 063001
doi: 10.1088/0963-0252/25/6/063001
|
9 |
MOREAU E Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40 (3): 605- 636
doi: 10.1088/0022-3727/40/3/S01
|
10 |
WANG H Y, LI J, JIN D, et al Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133- 137
doi: 10.1016/j.ijheatfluidflow.2017.08.004
|
11 |
KHORONZHUK R S, KARPENKO A G, VLASHKOV V, et al Microwave discharge initiated by double laser spark in a supersonic airflow[J]. Journal of Plasma Physics, 2015, 81 (3): 1- 12
|
12 |
THOMAS F O, CORKE T C, IQBAL M, et al Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47 (9): 2169- 2178
doi: 10.2514/1.41588
|
13 |
THOMAS F O, PUTNAM C M, CHU H C On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions[J]. Experiments in Fluids, 1994, 18 (1): 69- 81
|
14 |
SHINDE V J, GAITONDE D V, MCNAMARA J J. Control of shock wave turbulent boundary layer interaction using structurally constrained active surface morphing [C] // Science Technology 2020 Forum. Orlando: AIAA, 2020-0038.
|
15 |
PIPONNIAU S, DUSSAUGE J P, DEBIèVE J F, et al A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87- 108
doi: 10.1017/S0022112009006417
|
16 |
KLIMOV A, BITYURIN V and SEROV Y. Non-thermal approach in plasma aerodynamics [C] // 39th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2001-0348.
|
17 |
KLIMOV A, GRIGORENKO A, EFIMOV A, et al. Vortex control by non-equilibrium plasma [C] // 52nd Aerospace Sciences Meeting. Maryland: AIAA, 2014-0960.
|
18 |
ZUO F Y, MEMMOLO A, HUANGG P, et al Direct numerical simulation of conical shock wave–turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877: 167- 195
doi: 10.1017/jfm.2019.558
|
19 |
WANG J, LI Y H, CHENG B Q, et al Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow[J]. Journal of Physics D: Applied Physics, 2009, 42 (16): 165503
doi: 10.1088/0022-3727/42/16/165503
|
20 |
YAN H, LIU F, XU J. Oblique shock control by surface arc discharge plasma [C] // 8th AIAA Flow Control Conference. Washington: AIAA, 2016-3776.
|
21 |
王宏宇, 李军, 金迪等 激波/边界层干扰对等离子体合成射流的响应特性[J]. 物理学报, 2017, 66 (8): 084705 WANG Hong-yu, LI Jun, JIN Di, et al WU Yun. Response characteristics of shock wave/boundary layer interference to plasma synthetic jet[J]. Journal of physics, 2017, 66 (8): 084705
doi: 10.7498/aps.66.084705
|
22 |
杨臻. 射频放电等离子体激励特性及其控制激波的研究 [D]. 西安: 空军工程大学, 2018. YANG Zhen. Study on excitation characteristics and shock wave control of radio frequency discharge plasma [D]. Xi'an: Air Force Engineering University, 2018.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|