Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
基于液压平衡的试油试采系统建模与仿真
赵鹏宇1, 陈英龙1, 孙军2, 周华1
1.浙江大学流体动力与机电系统国家重点实验室,浙江 杭州310027;2.辽河油田分公司钻采工艺研究院,辽宁 盘锦 124000
Modeling and simulation of well test and production test system based on hydraulic balance
ZHAO Peng yu1, CHEN Ying long1, SUN Jun2, ZHOU Hua1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;2. Liaohe Oilfield Company Drilling and Production Process Research Institute, Panjin 124000, China
 全文: PDF(894 KB)   HTML
摘要:

 根据试油试采工况的特点与需求,提出采用液压泵/马达作为平衡配重的移动式试油试采系统. 试油试采系统采用开关磁阻电机作为主驱动电机,采用液压泵/马达和蓄能器作为配重.在下冲程时将抽油杆势能和主驱动电机输出的能量储存,在上冲程时将储存的能量释放,液压泵/马达和蓄能器组成的配重与主驱动电机共同提升抽油杆.利用质量集中法,将试油试采系统简化为三质量二联结系统,建立系统动力学模型,通过Simulink仿真得到系统动力学特性,包括抽油杆位移和速度、液压系统压力以及主驱动电机的功率.通过分析仿真结果可知,系统满足试油试采作业对于冲程冲次的要求;通过液压平衡配重提高了能量利用率,可以减小系统装机功率64.3%;电机运行工况得到改善,不对负载提供阻力矩,无负功工况,减小了对电力系统的冲击;系统结构紧凑,集成度高,便于运输.

Abstract:

A movable well test and production test system was proposed according to the characteristics and requirements of well test and production test. The system used switched reluctance motor as main drive motor, hydraulic pump / motor and accumulator as counterweight. The counterweight stored potential energy of the sucker rod and output energy of the main drive motor during the down stroke, and released them out during the upstroke to lift the sucker rod together with the main drive motor. Using lumped mass method, the simplified system can be regarded as a model which contains three mass and two couplings. The dynamic model of the system was established. The dynamic characteristics, including the displacement and speed of the sucker rod, the pressure of the hydraulic system and the motor power, were obtained by Simulink simulation. The simulation results show that the stroke, jig frequency and other characteristics meet the requirements of well test and production test. The system can improve energy utilization rate, and reduce installed power by 64.3%. The main drive motor doesn’t provide resistance moment, and the operation conditions are improved, which reduces the impact on the power system. The system is with high integration and easy to transport.

出版日期: 2016-04-01
:  TH 137  
基金资助:

浙江省重点科技创新团队自主设计资助项目(2013TD01).

通讯作者: 周华,男,教授,博导. ORCID: 0000 0001 8375 3291.     E-mail: hzhou@sfp.zju.edu.cn
作者简介: 赵鹏宇(1990—),男,博士生,从事流体传动与控制的研究. ORCID: 0000 0002 0514 2548. E-mail: zpy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.008.

ZHAO Peng yu, CHEN Ying long, SUN Jun, ZHOU Hua. Modeling and simulation of well test and production test system based on hydraulic balance. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.008        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/650

[1] 魏新.移动式试油试采举升装置电液控制系统的设计研究[D].杭州:浙江大学,2008.
WEI Xin. Design of electrohydraulic control system of traveling test oil and test tree lift equipment [D]. Hangzhou: Zhejiang University, 2008.
[2] 张彦廷,孙绪振,张恩强,等.液压抽油机关键参数分析及节能研究[J].机床与液压,2009, 37(10): 80-82.
ZHANG Yan ting, SUN Xu zhen, ZHANG En qiang, et al. Analysis on key parameters and the research oil energy saving for hydraulic pumping unit [J]. Machine Tool and Hydraulic, 2009, 37(10): 80-82.
[3] 方仁杰,朱维兵.抽油机历史现状与发展趋势分析[J].钻采工艺,2011, 34(2): 60-63.
FANG Ren jie, ZHU Wei bing. Analysis on history and development trend of pumping unit [J]. Drilling and Production Technology, 2011, 34(2): 60-63.
[4] 黄永平,郭凯,金玉善.调压式抽油机节能控制器的研究[J].电子学报,2013, 41(4): 828-832.
HUANG Yong ping, GUO Kai, JIN Yu shan. Research on voltage regulating energy saving controller of pumping unit [J]. Acta Electronica Sinica, 2013,41(4): 828-832.
[5] 范文明,宋锦春.新型节能液压抽油机驱动系统设计[J].机械设计与制造, 2014(7): 6871.
FAN Wen ming, SONG Jin chun. Design of a new energy saving driving system for oil pumping unit [J].Machinery Design and Manufacture, 2014(7): 68-71.
[6] 周广清.低矮型长冲程节能抽油机的研制及应用[J].石油机械,2014, 42(3): 88-91.
ZHOU Guang qing. Development and application of low size long stroke pumping unit [J]. China Petroleum Machinery, 2014, 42(3): 88-91.
[7] MORIDIS G J, SILPNGARMLERT S, REAGAN M T, et al. Gas production from a cold, stratigraphically bounded gas hydrate deposit at the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: implications of uncertainties [J]. Marine and Petroleum Geology, 2011, 28(2): 517-534.
[8] LCKMANN A J, ALVES M V C, JR J R B. Analysis of oil pumping in a reciprocating compressor [J].Applied Thermal Engineering, 2009, 29(14): 3118-3123.
[9] LU Q F, FAN C Z, YE Y Y, et al. A high torque density permanent magnet motor for oil pumping unit [J]. Journal of Applied Physics, 2008, 103(7): 1-3.
[10] LEA J F. What’s new in artificial lift [J]. World Oil, 2003, 204(5): 31-36.
[11] 聂松林,李壮云,余祖耀.轴向柱塞式液压马达转矩特性的理论研究[J].液压与气动,2002(7): 7-10.
NIE Song lin, LI Zhuang yun, YU Zu yao. Study on torque characteristic of axial piston hydraulic motor [J]. Chinese Hydraulics and Pneumatics, 2002(7): 7-10.
[12] 张慧英,汪旭东,高彩霞.开关磁阻电机转矩脉动最小化研究[J].微电机,2009, 42(9): 15-17.
ZHANG Hui ying, WANG Xu dong, GAO Cai xia. Study of minimization of torque ripple in SRM drives [J]. Micromotors, 2009, 42(9): 15-17.

[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[8] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[12] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[13] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[14] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.
[15] 赵鹏宇,陈英龙,周华. 油液混合动力工程机械系统及控制策略研究综述[J]. 浙江大学学报(工学版), 2016, 50(3): 449-459.